

itsfm : Identify, Track and Segment sound (by) Frequency (and its) Modulation

Introduction

The itsfm package identifies regions of sound with and without frequency modulation,
and allows custom measurements to be made on them. It’s all in the name. Each of the
task behind the identification, tracking and segmenting of a sound can be done independently.

The sounds could be bird, bat, whale, artifical sounds - it should hopefully work,
however be aware that this is an alpha version package at the moment.

The basic workflow involves the tracking of a sounds frequency over time, and then calculating the
rate of frequency modulation (FM), which is then used to decide which parts of a sound are frequency
modulated, and which are not. Here are some examples to show the capabilities of the package.

The broad idea of this package is to achieve a loose coupling between the I,T, S in the package name.
itsfm can do all or one of the below.

	I : Identify sounds by frequency modulation. An input audio can have multiple sounds in it, separated by silence or fainter regions.

	T : Track the sound’s frequency over time. The PWVD method allows tracking a sound’s frequency with high temporal resolution.

	S : Segment according to the frequency modulation. Calculates the local rate of frequency modulation over a sound and classifies parts of it
as frequency modulated (FM) or constant frequency (CF)

Warning : The docs are constantly under construction, and is likely to change fairly regularly like the stairs in Hogwarts.
Do not be surprised by dramatic changes, but do come back regularly to see improvements!

Let’s cut to the chase : some examples NOW

Examples!

	Basic Examples

	Detailed Examples Gallery

Using itsfm without coding:

	itsfm without coding
	Running a batch file analysis
	Outputs from a batch file analysis

	The batch file

	A simple batch file

	A batch file is extensible

	Each row is independent

	Skip a row

	Run only a single row

	Running parts of a batchfile

	Measurement file already exists

	Suppressing the ‘..already exists’ error
	Which argument/s can be specified?

itsfm Accuracy

	Accuracy Reports

What the package does:

	Identify sounds as being constant frequency or frequency modulated

	The ‘pwvd’ segmentation method allows a sample-level frequency estimation, the ‘frequency profile’ of the sound

	Generates an FM rate profile over the sound

	Performs basic outlier detection

What the package does not:

	Perform any kind of pattern detection/classification. The frequency profile of a sound is generated using
a percentile based threshold on each slice of the underlying Pseudo Wigner-Ville distribution.

	Handle complex and reverberant sounds. Sounds that are multi-component, ie, with multiple harmonics or
with variation in intensity of harmonics across the recording won’t fare very well.

	Separate overlapping sounds

Installation

This is a pre-PyPi version of the package. The easiest way to install the package is to head to this page [https://github.com/thejasvibr/itsfm.git], and
download/clone the repository. Go into the downloaded folder and type python setup.py install.

What the package could do with (future feature ideas):

	A sensible way to deal with edges of the signals. Right now the instantaneous frequencies suffer from spikes caused
by bad instantaneous frequency estimates at the edges in the pseudo-wigner ville distribution method.

	Informed frequency tracking (eg. Viterbi path or similar) in multi-harmonic sounds. Right now
the frequency profile of a sound is selected by independently choosing the first peak in the time-frequency
slice. This prevents a sensible tracking of frequency because even slight variations in harmonic intensities
over a sound can cause the peak frequency to jump almost an octave sometimes!

	More time-frequency representation implementations and the signal cleaning methods associated with them.

Why is everything in this codebase a function? Have you heard of classes?

This is the author’s first Python package, and the author admits it may not
be the most elegant implementation. The author’s previous experience (or lack thereof)
working with classes may have left some bad memories :P.However the author also admits
that many things in the package might have been less cumbersome with the use of classes,
and plans to implement it in due time.

Where to get help

Errors

	Common Errors
	1. Bad signal_level

	2. Bad signal_level

	3. Bad signal_level or window_size

	4. Bad signal_level or window_size

	Anomaly spans whole array

Hopefully this web page has enough information. Use the search bar to check if the error/issue
you’re encountering has already been documented. Also do check the examples to see
if the same error messages have been explained. If something’s not clear or
there’s something not covered do write to me : thejasvib@gmail.com. I’ll try to answer
within a week.

I found a bug and/or have fixed something

Please raise an issue or pull request on Github

Acknowledgements

The PWVD transforms in itsFM rely on the tftb [https://tftb.readthedocs.io/en/latest/index.html] package by Jaidev Deshpande.
I’d like to thank the Neetash MR, Aditya Krishna and Holger R. Goerlitz for helpful discussions that eventually lead down this path, and Diana
Schoeppler for discussions that inspired the peak percentage method in this package. I’d also like to thank all the people who happily sent
me example data and gave feedback whenever asked!

License

MIT License

Copyright (c) 2020 Thejasvi Beleyur

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

API reference:

	API : The user interface

	API : Segmenting sounds into CF and FM

	API: Measuring sounds
	Measurement functions
	What is a measurement function:
	Measurement function parameters

	What needs to be returned:

	API : Viewing sounds, parameters and results

	API: support modules
	Frequency tracking
	The Pseudo Wigner Ville Distribution

	Signal processing

	Signal cleaning

	Batch processing

Basic Examples

This is a set of relatively straightforward examples. Start with the bat call example!
The bat example is the only one with all the plots already rendered due to RAM limitations - sorry about that!
You can of course always download all the examples and run them as individual .py or Jupyter notebooks!

All of the frequency tracking in itsfm is based on generating what is called the Pseudo Wigner-Ville Distribution (PWVD). To
get a very quick idea of how it compares to a spectrogram checkout the ‘Segmenting with the PWVD method’ example.

[image: ../_images/sphx_glr_plot_0_segmenting_real_sounds_thumb.png]
Bat call example

[image: ../_images/sphx_glr_plot_2_pwvd_thumb.png]
Segmenting with the PWVD method

[image: ../_images/sphx_glr_plot_peak_percentage_thumb.png]
The peak-percentage method

[image: ../_images/sphx_glr_plot_the_call_zoo_thumb.png]
Finding the right parameter setting with the call zoo

[image: ../_images/sphx_glr_z_bird_eg_thumb.png]
Bird song example

[image: ../_images/sphx_glr_z_choosing_thumb.png]
Setting the correct max_acc value

[image: ../_images/sphx_glr_z_custom_funcs_thumb.png]
Inbuilt and custom measurements on CF and FM segments

[image: ../_images/sphx_glr_z_segmenting_accurately_thumb.png]
Segmenting real-world sounds correctly with synthetic sounds

Download all examples in Python source code: gallery_dir_python.zip

Download all examples in Jupyter notebooks: gallery_dir_jupyter.zip

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here to download the full example code

Bat call example

The <INSERTNEWNAME> package has many example recordings of bat calls thanks to
the generous contributions of bioacousticians around the world:

import matplotlib.pyplot as plt
import numpy as np
import itsfm
from itsfm.run_example_analysis import contributors
print(contributors)

Out:

Cannot import SoundFile!!
/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-packages/itsfm-0.0.1-py3.7.egg/itsfm/data/__init__.py:17: UserWarning:

 The package soundfile could not be imported properly. Check your installation.Using the scipy.io package for now.
 warnings.warn(msg1+msg2)
/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-packages/itsfm-0.0.1-py3.7.egg/itsfm/data/__init__.py:66: WavFileWarning: Chunk (non-data) not understood, skipping it.
 fs_original, audio = wav.read(each)
/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-packages/itsfm-0.0.1-py3.7.egg/itsfm
/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-packages/itsfm-0.0.1-py3.7.egg/itsfm/data_contributors.csv
0 Aditya Krishna
1 Aiqing Lin
2 Klaus-Gerhard Heller
3 Neetash MR
4 Laura Stidsholt
Name: people, dtype: object

from itsfm.data import example_calls, all_wav_files

Separating the constant frequency (CF) and frequency-modulated parts of a call

Here, let’s take an example R. mehelyi/euryale(?) call recording. These
bats emit what are called ‘CF-FM’ calls. This is what it looks like.

bat_rec = list(map(lambda X: '2018-08-17_34_134' in X, all_wav_files))
index = bat_rec.index(True)
audio, fs = example_calls[index] # load the relevant example audio

w,s = itsfm.visualise_sound(audio,fs, fft_size=128)
set the ylim of the spectrogram narrow to check out the call in more detail
s.set_ylim(60000, 125000)

[image: ../_images/sphx_glr_plot_0_segmenting_real_sounds_001.png]
Out:

(60000.0, 125000.0)

Now, let’s segment and get some basic measurements from this call. Ignore the
actual parameter settings for now. We’ll ease into it later !

non_default_parameters = {
 'segment_method':'pwvd',
 'signal_level':-26, # dBrms re 1
 'fmrate_threshold':2.0, # kHz/ms
 'max_acc':2.0, # kHz/ms^2
 'window_size':int(fs*0.0015) # number of samples
 }
outputs = itsfm.segment_and_measure_call(audio, fs,
 **non_default_parameters)

load the results into a convenience class
itsFMinspector parses the output and creates diagnostic plots
and access to the underlying diagnostic data itself

output_inspect = itsfm.itsFMInspector(outputs, audio, fs)

Let’s check that the threshold we chose actually matches the region
of audio we’re interested in

output_inspect.visualise_geq_signallevel()

[image: ../_images/sphx_glr_plot_0_segmenting_real_sounds_002.png]
Out:

(<AxesSubplot:xlabel='Time, s', ylabel='Frequency, Hz'>, <AxesSubplot:>)

Let’s take a look at how long the different parts of the call are.

output_inspect.measurements

Verifying the CF-FM segmentations

Here, let’s see where the calls are in time and how they match the spectrogram output

output_inspect.visualise_cffm_segmentation()
plt.tight_layout()
plt.savefig('pwvd_cffm_segmentation.png')

[image: ../_images/sphx_glr_plot_0_segmenting_real_sounds_003.png]
Even without understanding what’s happening here, you can see the
‘sloped’ regions are within the red boxes, and the ‘relatively even
region is in the black box. These are the FM and CF parts of this call.

The underlying frequency profile of a sound

The CF and FM parts of a call in the ‘pwvd’ method is based on actually
tracking the instantaneous frequency of the call with high temporal
resolution. With this profile, the rate of frequency change, or modulation
can be calculated for each region. Using a threshold rate of the
frequency modulation, call regions above and below it can be easily identified!

s,w = output_inspect.visualise_frequency_profiles()
s.legend_.remove()

handles, labels = s.get_legend_handles_labels()
labels_new = ['Raw frequency profile (FP)','Error corrected FP','Downsampled FP']
l = s.legend(handles, labels_new, loc=8, fontsize=11,
 borderaxespad=0., frameon=False, labelcolor='w')
s.set_ylabel('Frequency, Hz', labelpad=-1.5)
plt.savefig('pwvd_freqprofiles.png')

[image: ../_images/sphx_glr_plot_0_segmenting_real_sounds_004.png]
You can see from the plot above that the frequency profile of the sound
shows a relatively constant frequency region of the call in middle and
with frequency modulated regions in the middle.

The underlying frequency modulation rate

fmrate_plot, spec, waveform = output_inspect.visualise_fmrate()
fmrate_plot.hlines(2,0,audio.size/fs, linestyle='dotted',label='2 kHz threshold')
fmrate_plot.legend(frameon=False)
plt.savefig('pwvd_fmrate_diagnostic.png')

[image: ../_images/sphx_glr_plot_0_segmenting_real_sounds_005.png]

Performing measurements on the CF and FM parts of a call

We were just able to get some measurements on the Cf and FM
parts of the call. What if we want more information, eg. the
rms, and peak frequency of each CF and FM call part? This is
where <insertname> has a bunch of inbuilt and customisable
measurement functions.

inbuilt_measures = [itsfm.measure_peak_frequency,
 itsfm.measure_rms]

non_default_parameters['measurements'] = inbuilt_measures

The output is a tuple with 3 objects in it related to the segmentation
individual call parts and the measurements made on them.
We’re happy with the actual segmentation, and so won’ be making anymore diagnostic
plots, and won’ need to call itsFMInspector anymore.
We can unpack the outputs into its components and just view the measurements.

seg_out, call_parts, results_inbuilt = itsfm.segment_and_measure_call(audio, fs,
 **non_default_parameters
)
results_inbuilt

The results are output as a pandas DataFrame, which means they can be easily
saved as a csv file if you were to run it in your system. Each row corresponds
to one identified CF or FM region in an audio recording.

Defining custom measurements

If the inbuilt measurement functions are not enough - then you may
want to write your own. See the documentation for what a measurement
function must look like by typing help(itsfm.measurement_function).
The ‘peak_to_peak’ function below calculates the difference
between the highest negative and highest positive value. This effectively
the maximum range of values that the signal takes.

def peak_to_peak(whole_audio, fs, segment, **kwargs):
 '''
 Calculates the range between the minimum and the maximum of the audio
 samples.
 '''
 relevant_audio = whole_audio[segment]
 peak2peak = np.max(relevant_audio) - np.min(relevant_audio)
 return {'peak2peak':peak2peak}

custom_measure_fn = [peak_to_peak]

add the custom_measure list to the :code:`non_default_parameters` dictionary
#
non_default_parameters['measurements'] = custom_measure_fn

seg_out, call_parts, results_custom = itsfm.segment_and_measure_call(audio, fs,
 **non_default_parameters
)
results_custom

Of course, needless to say, you can also mix and match inbuilt with
custom defined measurement functions.

mixed_measures = [peak_to_peak, itsfm.measure_rms]
non_default_parameters['measurements'] = mixed_measures

seg_out, call_parts, results_mixed = itsfm.segment_and_measure_call(audio, fs,
 **non_default_parameters
)
results_mixed

Total running time of the script: (0 minutes 17.901 seconds)

Download Python source code: plot_0_segmenting_real_sounds.py

Download Jupyter notebook: plot_0_segmenting_real_sounds.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here to download the full example code

Segmenting with the PWVD method

The ‘PWVD’ method stands for the Pseudo Wigner-Ville Distribution. It is a class
of time-frequency representations that can be used to be gain very high spectro-
temporal resolution of a sound [1,2], and can outdo the spectrogram in terms
of how well it allows the tracking of frequency over time.

How does it work?

The PWVD is made by performing a local auto-correlation at each sample in the
audio signal, with a window applied onto it later. The FFT of this windowed-
auto correlation reveals the local spectro-temporal content. However, because
of the fact that there are so many auto-correlations and FFT’s involved
in its construction - the PWVD can therefore take much more time to generate.

Note

The ‘tftb’ package [3] is used to generate the PWVD representation in this package. The website is also a
great place to see more examples and great graphics of the PWVD and alternate
time-frequency distributions!.

References

[1] Cohen, L. (1995). Time-frequency analysis (Vol. 778). Prentice hall.

[2] Boashash, B. (2015). Time-frequency signal analysis and processing: a comprehensive reference. Academic Press.

[3] Jaidev Deshpande, tftb 0.1.1, https://tftb.readthedocs.io/en/latest/auto_examples/index.html

Let’s begin by making a synthetic CF-FM call which looks a lot like a horseshoe/leaf nosed bat’s call

import matplotlib.pyplot as plt
import numpy as np
import scipy.signal as signal
import itsfm
from itsfm.frequency_tracking import generate_pwvd_frequency_profile
from itsfm.frequency_tracking import pwvd_transform
from itsfm.simulate_calls import make_cffm_call
from itsfm.segment import segment_call_into_cf_fm

fs = 44100
call_props = {'cf':(8000, 0.01),
 'upfm':(2000,0.002),
 'downfm':(100,0.003)}

cffm_call, freq_profile = make_cffm_call(call_props, fs)
cffm_call *= signal.tukey(cffm_call.size, 0.1)

w,s = itsfm.visualise_sound(cffm_call, fs, fft_size=64)

[image: ../_images/sphx_glr_plot_2_pwvd_001.png]
The PWVD is a somewhat new representation to most people, so let’s just check out an example

pwvd = pwvd_transform(cffm_call, fs)

The output is an NsamplesxNsamples matrix, where Nsamples is the number
of samples in the original audio.

plt.figure()
plt.imshow(abs(pwvd), origin='lower')
num_rows = pwvd.shape[0]
plt.yticks(np.linspace(0,num_rows,11), np.linspace(0, fs*0.5, 11))
plt.ylabel('Frequency, Hz')
plt.xticks(np.linspace(0,num_rows,5),
 np.round(np.linspace(0, cffm_call.size/fs, 5),3))
plt.xlabel('Time,seconds')

[image: ../_images/sphx_glr_plot_2_pwvd_002.png]
Out:

Text(0.5, 0, 'Time,seconds')

In comparison to the ‘crisp’ time-frequency representation of the
PWVD, let’s compare how a spectrogram with comparable parameters
looks:

onems_samples = int(fs*0.001)
plt.figure()
out = plt.specgram(cffm_call, Fs=fs, NFFT=onems_samples, noverlap=onems_samples-1)

[image: ../_images/sphx_glr_plot_2_pwvd_003.png]
The dominant frequency at each sample can be tracked to see how the
the frequency changes over time. Let’s not get into the details right away,
and proceed with the segmentation first.

cf, fm, info = segment_call_into_cf_fm(cffm_call, fs, segment_method='pwvd',
 window_size=50)

The segment_call_into_cf_fm provides the estimates of which samples are CF and FM. The info object is a
dictionary with content that varies according to the segmentation method used. For instance:

info.keys()

Out:

dict_keys(['moving_dbrms', 'geq_signal_level', 'raw_fp', 'acc_profile', 'spikey_regions', 'fmrate', 'cleaned_fp', 'fitted_fp'])

Total running time of the script: (0 minutes 0.851 seconds)

Download Python source code: plot_2_pwvd.py

Download Jupyter notebook: plot_2_pwvd.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here to download the full example code

The peak-percentage method

The peak percentage method works if the constant frequency portion of a sound segment
is the highest frequency. For instance, in CF-FM bat calls, the calls typically have
a CF and one or two FM segments connected.

This method is loosely based on the spectrogram based CF-FM segmentation in [1], but most importantly
it differs because it is implemented completely in the time-domain.

How does it work?

A constant frequency segment in any sound leads to a peak in the power spectrum. The same audio
is high-passed and low-passed at a threshold frequency that’s very close (eg. 99% of the peak frequency)

and just below the peak frequency. This creates two versions of the same sound, one with an emphasis on the CF, and one with the emphasis on

the FM. By comparing the two sounds, the segmentation proceeds to detect CF and FM parts.

References

	[1]Schoeppler, D., Schnitzler, H. U., & Denzinger, A. (2018). Precise Doppler shift compensation in the hipposiderid bat,
	Hipposideros armiger. Scientific reports, 8(1), 1-11.

import matplotlib.pyplot as plt
import scipy.signal as signal
import itsfm
from itsfm.simulate_calls import make_cffm_call
from itsfm.segment import segment_call_into_cf_fm

from itsfm.data import example_calls, all_wav_files

bat_rec = list(map(lambda X: '2018-08-17_34_134' in X, all_wav_files))
index = bat_rec.index(True)
audio, fs = example_calls[index] # load the relevant example audio

w,s = itsfm.visualise_sound(audio,fs, fft_size=128)
set the ylim of the spectrogram narrow to check out the call in more detail
s.set_ylim(60000, 125000)

[image: ../_images/sphx_glr_plot_peak_percentage_001.png]
Out:

(60000.0, 125000.0)

Now, let’s proceed to run the peak-percentage based segmentation.

non_default_params = {'segment_method':'peak_percentage',
 'window_size':int(fs*0.0015),
 'signal_level':-30,
 'double_pass':True}
outputs = itsfm.segment_and_measure_call(audio, fs,
 **non_default_params)

load the results into a convenience class
itsFMinspector parses the output and creates diagnostic plots
and access to the underlying diagnostic data itself

output_inspect = itsfm.itsFMInspector(outputs, audio, fs)

Verifying the CF-FM segmentations

Here, let’s see what the output of the peak-percentage method shows

output_inspect.visualise_cffm_segmentation()
plt.tight_layout()
plt.savefig('pwvd_cffm_segmentation.png')

[image: ../_images/sphx_glr_plot_peak_percentage_002.png]

Low/high passed audio profiles

Let’s also take a look at the low and high -passed audio profiles.
The regions where the dB rms of the high-passed audio is greater than
the low-passed audio is considered CF and vice-versa is considered FM.

spec, profiles = output_inspect.visualise_pkpctage_profiles()
profiles.legend(loc=9, frameon=False)
plt.savefig('pkpctage_profiles.png')

[image: ../_images/sphx_glr_plot_peak_percentage_003.png]
The two profiles match the expected CF/FM regions fairly well.

Total running time of the script: (0 minutes 2.397 seconds)

Download Python source code: plot_peak_percentage.py

Download Jupyter notebook: plot_peak_percentage.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here to download the full example code

Finding the right parameter setting with the call zoo

The ‘call zoo’ is an inbuilt collection of sounds which were made for testing
the package. It has a variety of sounds to assess the accuracy of the
segmentation and measuring capabilities of the pacakge.

import matplotlib.pyplot as plt
import numpy as np
np.random.seed(82319)
import itsfm
from itsfm.simulate_calls import make_call_zoo, add_noise
from itsfm.segment import segment_call_into_cf_fm

fs=30000

freq_profile, call_zoo = make_call_zoo(fs=fs, gap=0.1)
add_noise(call_zoo, -40)

itsfm.visualise_sound(call_zoo, fs, fft_size=128)
itsfm.plot_movingdbrms(call_zoo,fs, window_size=int(fs*0.001))

[image: ../_images/sphx_glr_plot_the_call_zoo_001.png]
Now, let’s run the segmentation on this sound

segment_parameters = {'window_size' : int(fs*0.001),
 'segment_method':'pwvd',
 'signal_level': -30,
 'sample_every':0.25*10**-3}
segment_out = segment_call_into_cf_fm(call_zoo, fs, **segment_parameters)
cf, fm, info = segment_out
itsfm.visualise_cffm_segmentation(cf,fm,call_zoo,fs, fft_size=128)

[image: ../_images/sphx_glr_plot_the_call_zoo_002.png]
Out:

(<AxesSubplot:>, <AxesSubplot:xlabel='Time, s', ylabel='Frequency, Hz'>)

Now, the results show that some sounds are being recognised, but a closer
look the results indicate there’s too much silence on either side of the
sounds, and the FM sweeps at the end have been mis-classified as CF sounds. Why is this happening?
This kind of apparent errors typically come from a bad match between the recordings properties and the
default parameter values in place. The ‘issues’ can be sorted out most of the time
by playing around with the parameter values.

Total running time of the script: (0 minutes 13.804 seconds)

Download Python source code: plot_the_call_zoo.py

Download Jupyter notebook: plot_the_call_zoo.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here to download the full example code

Bird song example

Here we’ll use the recordings of a common bird, the great tit (Parus major).
The recording is an excerpt of a bigger recording made by Jarek Matusiak
(Xeno Canto, XC235125) - give it a listen here [https://www.xeno-canto.org/235125].

Note

As of version 0.0.X, this recording is also a very good example of how
multi-harmonic sounds can’t be tracked very well!

import matplotlib.pyplot as plt
plt.rcParams['agg.path.chunksize'] = 10000
import numpy as np
import scipy.signal as signal
import itsfm
from itsfm.data import example_calls, all_wav_files,folder_with_audio_files

great_tit_rec = list(map(lambda X: 'Parus_major_Poland' in X, all_wav_files))
index = great_tit_rec.index(True)
full_audio, fs = example_calls[index] # load the relevant example audio

#
w,s = itsfm.visualise_sound(full_audio, fs, fft_size=512)
s.set_ylim(0,10000)

The complete audio recording takes a long time to run, and so let’s focus on
the sections between 0.8-1.5s. It contains one example of the three types of
the great tit’s calls.

t_start, t_stop = 0.8, 1.5
selection = slice(int(fs*t_start), int(fs*t_stop))
audio = full_audio[selection]

w,s = itsfm.visualise_sound(audio, fs, fft_size=256)
s.set_ylim(0,10000)

The bird song has a three types of calls, a smooth frequency modulated sweep
a constant frequency tone, and the last element has a rather rapid frequency
sweep which then transitions into a constant frequency segment.

Setting the correct signal level

The frequency profile of a sound is calculated only for those chunks of the
audio that are above a threshold dBrms, called the signal_level.
Make a moving dBrms plot to see which a sensible signal threshold to set

plt.figure()
a = plt.subplot(211)
itsfm.plot_movingdbrms(audio, fs, window_size=int(0.005*fs))
plt.subplot(212, sharex=a)
out = plt.specgram(audio, Fs=fs, NFFT=256, noverlap=255)
a.grid()

With this plot, we can see that a level of -34 dB rms with a 5ms window
will choose the song elements well. Let’s try it out.

non_default_params = {
 'segment_method':'pwvd',
 'signal_level':-34,
 'window_size':int(fs*0.005),
 'pwvd_window':0.010,
 'medianfilter_size':0.005,
 'sample_every':20*10**-3
 }

output = itsfm.segment_and_measure_call(audio, fs,**non_default_params)

bird_inspect = itsfm.itsFMInspector(output,audio,fs, fft_size=512)

First, let’s check if we’re actually picking up the bird signals reliable
with the signal_level we chose.

bird_inspect.visualise_geq_signallevel()

And let’s look at the measurements

bird_inspect.measurements

We see there are 9 valid sound segments picked up, and their start and stop
times are displayed. How have they been classified?

bird_inspect.visualise_cffm_segmentation()

Whoops, it seems like they’ve all been classified as CF parts. Even though
the audio actually has FM parts in it, or so we think. Well, whether something
is frequency modulated or not is set by the fmrate_threshold. We need to
correct the situation by setting it to a more sensible value.

Setting a non-default FM rate

The segmentation of sounds into FM and CF regions happens
by looking at the FM rate over the sound. Whenever a region
crosses the FM rate threshold, it is considered an FM region.
Let’s check out the FM rate over the sound with the current parameters,
and then choose a more sensible, non-default fmrate_threshold parameter.

bird_inspect.visualise_fmrate()

As you can see the constant frequency and modulated parts are being tracked pretty well,
but they’re not being classified properly. The CF or FM
classification is based on the estimated reate of frequency modulation over the sound,
,the fmrate_threshold. The default if 1kHz/ms, which is a lot if you
think about it. At this rate, the bird would have gone from 20kHz to 20 Hz in about
20 milliseconds, and you would have barely heard it. This default FM rate is set
to pick up FM regions in bats, and so it needs to be adjusted for other animals.

The fm segments in the great tits song correspond to an FM rate of >= 0.005 kHz/ms.
Remember that all frequency modulation rates are in kHz/ms. Let’s set this as the
threshold and proceed to segment.

non_default_params['fmrate_threshold'] = 0.02 #

output_newrate = itsfm.segment_and_measure_call(audio, fs,
 **non_default_params)

newrate_inspect = itsfm.itsFMInspector(output_newrate, audio, fs, fft_size=512)

And let’s look at the measurements

newrate_inspect.measurements

Let’s check the the segmentation output again now

newrate_inspect.visualise_cffm_segmentation()

So, it’s improved, and there seem to be mainly FM regions in at the edges of
the sounds. Is this real, or an artifact of the frequency profile fitting. Let’s
inspect the actual frequency profiles underlying the fmrate calcultions

newrate_inspect.visualise_frequency_profiles()

The issue with the third element is that there’s a multiple harmonics
and this may cause the local frequency estiamte to vary up and down
. We can try to overcome the effect of non-peak frequencies using the
percentile parameter. The percentile essentially

to be completed….

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: z_bird_eg.py

Download Jupyter notebook: z_bird_eg.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here to download the full example code

Setting the correct max_acc value

Some of the methods in the <INSERTNAME> package estimate the instantaneous
frequency at sample-level resolution. Most methods will suffer from edge effects
which cause the estimated instantaneous frequency to spike especially at the start and end of

the sound or due to noise.

The typical way these spikes are dealt with is to calculate an aboslute frequency
accelaration profile along the frequency profile. Any regions above a certain
threshold are considered anomalous, and an (sort of) extrapolation is attempted
using the nearest non-anomalous regions.

An example frequency profile

Let’s create an example sound, and use the PWVD method to track the instantaneous
frequency over time.

import numpy as np
from itsfm.frequency_tracking import generate_pwvd_frequency_profile, frequency_spike_detection
from itsfm.simulate_calls import make_fm_chirp
import matplotlib.pyplot as plt
from itsfm.view_horseshoebat_call import plot_accelaration_profile, time_plot

Let’s create a hyperbolic chirp, this is a nice example because the
the hyperbolic chirp shows a nice variation in frequeny velocity over time.
This means the accelaration varies from low–>high. But what is an ‘acceptable’
value of accelaration to allow. Let’s inspect the accelaration profile itself
to understand what accelaration values are ‘normal’ and which values correspond
to the spikes caused by the edge effects and noise.

fs = 22100
chirp = make_fm_chirp(500, 5000, 0.100, fs, 'logarithmic')

raw_fp, frequency_index = generate_pwvd_frequency_profile(chirp,
 fs, percentile=99)
plt.figure()
time_plot(raw_fp,fs)

The spikes caused by edge effects are there here too- even without noise. Let’s
check out the typical accelaration profile of this sound, and pay special
attention to the values towards the ends.

acc_plot = plot_accelaration_profile(raw_fp, fs)
acc_plot.set_ylim(0,0.5) # show a limited y-axis, because the frequency spikes mess up the display

Remember that the accelaration of the frequency is calcualted at a per-sample resolution and thus may not show
too much variation – but the profile still shows outliers! Looking at this
plot we can see that a value \(\geq\) 0.1 kHz/ms \(^{2}\) is likely to be an outlier.

Now, we know a way to set sensible max_acc values for our own recordings - let’s see
how this translates to outlier detection in the frequency profile:

spikey_regions, acc_profile = frequency_spike_detection(raw_fp, fs, max_acc=0.1)

plt.figure()
a = plt.subplot(211)
time_plot(raw_fp, fs)
plt.plot(np.argwhere(spikey_regions)/fs, raw_fp[spikey_regions],
 '*', label='Anomalous spikes in frequency profile')
plt.legend()
a.set_title('Detected spikes in frequency profile')
a.set_ylabel('Frequency, Hz')
a.set_xticks([])
b = plt.subplot(212)
time_plot(acc_profile, fs)
plt.plot(np.argwhere(spikey_regions)/fs, acc_profile[spikey_regions], '*')
b.set_ylim(0,0.5)
b.set_title('Frequency accelaration profile')
b.set_ylabel('Frequency accelaration, kHz/ms^{2}')

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: z_choosing.py

Download Jupyter notebook: z_choosing.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here to download the full example code

Inbuilt and custom measurements on CF and FM segments

By default, a baic set of information/measurements is given for each
recognised CF/FM segment in the input audio, its start, stop and duration.

Let’s begin by making a synthetic CF-FM call which looks a lot like a horseshoe/leaf nosed bat’s call

import matplotlib.pyplot as plt
import scipy.signal as signal
from itsfm.simulate_calls import make_cffm_call
from itsfm.view_horseshoebat_call import visualise_call
from itsfm.user_interface import segment_and_measure_call

Lets now create a sound that’s got only one CF and one FM component
in it. Horseshoe/leaf nosed bats emit these kinds of calls too.

fs = 44100
call_props = {'cf':(8000, 0.01),
'upfm':(8000,0.002), # not that the 'upfm' frequency starts at the CF frequency!
'downfm':(100,0.003)}

cffm_call, freq_profile = make_cffm_call(call_props, fs)
cffm_call *= signal.tukey(cffm_call.size, 0.1)

w,s = visualise_call(cffm_call, fs, fft_size=64)

Now, segment and measure using the ‘peak pecentage’ method

output = segment_and_measure_call(cffm_call, fs,
 segment_method = 'peak_percentage',
 peak_percentage=0.95,
 window_size=44)
segment_info, call_parts, results, _ = output

If everything went well, the output should give us one CF and one FM component.
The parameters may need to be tweaked based on the sampling rate and the
amount of frequency modulation in the calls. This is true especially for
sounds with a ‘curvature’ in the frequency profile, because sometimes the
frequency change may be gradual and then become sudden, eg in the transition between
CF and FM in this example call.

Another important aspect to notice is that the window size has been set to 44 samples.
This corresponds to a short window of ~0.1ms. This short window size is used to compare the relative CF and FM emphasised dB rms
profiles (see ‘The peak percentage method’).

print(results)

What if we want more than just the duration of each component?
There are inbuilt functions such which allow the measurement of the
rms, peak-amplitude, peak frequency and terminal frequency of each segment.
Let’s get the peak frequency and peak amplitude for all segments

from itsfm.measurement_functions import measure_peak_frequency, measure_peak_amplitude

added_measures = [measure_peak_amplitude, measure_peak_frequency]

output = segment_and_measure_call(cffm_call, fs,
 peak_percentage=0.95,
 window_size=44,
 measurements=added_measures)

segment_info, call_parts, results, _ = output

print(results)

Now, what if this is not what we’re looking for and we needed to get, say, the dB peak amplitude?
This calls for a custom measurement function. Each measurement function follows
a particular pattern of three inputs and one output. See the measurement_function
documentation or call it through the help

from itsfm import measurement_functions as measure_funcs
help(measure_funcs)

Let’s also take a look at the source code for one of the measurement functions
we just used above measure_peak_amplitude:

import inspect
print(inspect.getsource(measure_peak_amplitude))

The output needs to be a dictionary with the measurement names and values in
the keys and items respectively.

So, now let’s get the dB peak value of our audio segments

import numpy as np
from itsfm.signal_processing import dB

def measure_dBpeak(audio, fs, segment, **kwargs):
 relevant_audio = audio[segment]
 dB_peak_value = dB(np.max(np.abs(relevant_audio)))
 return {'dB_peak': dB_peak_value}

output = segment_and_measure_call(cffm_call, fs,
 peak_percentage=0.95,
 window_size=44,
 measurements=[measure_dBpeak])

segment_info, call_parts, results, _ = output

print(results)

So, looking at the dB peak value tells us that both CF and FM components are
pretty strong, and of comparable levels. Both are close to 0 dB (re 1), which means
they’re pretty close to the maximum signal value.

Just like the measure_dBpeak, we can chain a series of inbuilt or custom measurement
functions in a list - and the outputs will all appear as a wide-formate Pandas DataFrame.

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: z_custom_funcs.py

Download Jupyter notebook: z_custom_funcs.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here to download the full example code

Segmenting real-world sounds correctly with synthetic sounds

It’s easy to figure out if a sound is being correcly segmented if the
signal at hand is well defined, and repeatable, like in many technological/
engineering applications. However, in bioacoustics, or
a more open-ended field recording situation, it can be very hard
to know the kind of signal that’ll be recorded, or what its
parameters are.

Just because an output is produced by the package, it doesn’t
always lead to a meaningful result. Given a set of parameters,
any function will produce an output as long as its sensible. This
means, with one set of parameters/methods the CF segment might
be 10ms long, while with another more lax parameter set it might
be 20ms long! Remember, as always, GIGO [https://en.wikipedia.org/wiki/Garbage_in,_garbage_out] (Garbage In, Garbage Out):P.

How to segment a sound into CF and FM segments in an accurate
way?

Synthetic calls to the rescue

Synthetic calls are sounds that we know to have specific properties
and can be used to test if a parameter set/ segmentation method
is capable of correctly segmenting our real-world sounds and
uncovering the true underlying properties.

The simulate_calls module has a bunch of helper functions
which allow the creation of FM sweeps, constant frequency
tones and silences. In combination, these can be used to
get a feeling for which segmentation methods and parameter sets
work well for your real-world sound (bat, bird, cat, <insert sound source of choice>)

Generating a ‘classical’ CF-FM bat call

import matplotlib.pyplot as plt
import numpy as np
import scipy.signal as signal
from itsfm.simulate_calls import make_cffm_call,make_tone, make_fm_chirp, silence
from itsfm.view_horseshoebat_call import visualise_call
from itsfm.segment_horseshoebat_call import segment_call_into_cf_fm
from itsfm.signal_processing import dB, rms

fs = 96000
call_props = {'cf':(40000, 0.01),
 'upfm':(38000,0.002),
 'downfm':(30000,0.003)}

cffm_call, freq_profile = make_cffm_call(call_props, fs)
cffm_call *= signal.tukey(cffm_call.size, 0.1)

w,s = visualise_call(cffm_call, fs, fft_size=128)

Remember, the terminal frequencies and durations of the CF-FM calls can be adjusted to the
calls of your species of interest!!

A multi-component bird call

Let’s make a sound with two FMs and CFs, and gaps in between

fs = 44100

fm1 = make_fm_chirp(1000, 5000, 0.01, fs)
cf1 = make_tone(5000, 0.005, fs)
fm2 = make_fm_chirp(5500, 9000, 0.01, fs)
cf2 = make_tone(8000, 0.005, fs)
gap = silence(0.005, fs)

synth_birdcall = np.concatenate((gap,
 fm1, gap,
 cf1, gap,
 fm2, gap,
 cf2,
 gap))

w, s = visualise_call(synth_birdcall, fs, fft_size=64)

Let there be Noise

Any kind of field recording will have some form of noise. Each of the
the segmentation methods is differently susceptible to noise, and it’s
a good idea to test how well they can tolerate it. For starters, let’s
just add white noise and simulate different signal-to-noise ratios (SNR).

noisy_bird_call = synth_birdcall.copy()
noisy_bird_call += np.random.normal(0,10**(-10/20), noisy_bird_call.size)
noisy_bird_call /= np.max(np.abs(noisy_bird_call)) # keep sample values between +/- 1

Estimate an approximate SNR by looking at the rms of the gaps to that of
a song component

level_background = dB(rms(noisy_bird_call[gap.size]))

level_song = dB(rms(noisy_bird_call[gap.size:2*gap.size]))

snr_approx = level_song-level_background

print('The SNR is approximately: %f'%np.around(snr_approx))

w, s = visualise_call(noisy_bird_call, fs, fft_size=64)

We could try to run the segmentation + measurement on a noisy sound straight away,
but this might lead to poor measurements. Now, let’s bandpass the audio
to remove the ambient noise outside of the song’s range.

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: z_segmenting_accurately.py

Download Jupyter notebook: z_segmenting_accurately.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Detailed Examples Gallery

This is a collection of detailed and more technically oriented examples illustrating
the effect and role of various parameters on the effectiveness of frequency tracking
and CF-FM segmentation.

[image: ../_images/sphx_glr_plot_0_detailed_thumb.png]
‘Difficult’ example

Download all examples in Python source code: gallery_detailed_python.zip

Download all examples in Jupyter notebooks: gallery_detailed_jupyter.zip

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here to download the full example code

‘Difficult’ example

The <insertname> package was mainly designed keeping horseshoe bat calls
in mind. These calls are high-frequency (>50kHz) and short (20-50ms) sounds
which are quite unique in their structure. Many of the default parameter
values reflect the original dataset. In fact, many of the default parameters
don’t even work for some of the example datasets themselves!
It should be no surprise that unpredictable things happen when segmentation
and tracking is run with default values.

This example will guide you through understanding the various parameters
that can be tweaked and what effect they actually have. It is not
an exhaustive treatment of the implementation, but a ‘lite’ intro. For more
details of course, the original documentation should hopefully be helpful.

from matplotlib.lines import Line2D
import matplotlib.pyplot as plt
import itsfm
from itsfm.data import example_calls, all_wav_files

a chosen set of tricky calls to illustrate various points

tricky_rec = list(map(lambda X: '2018-08-17_23_115' in X, all_wav_files))
index = tricky_rec.index(True)
audio, fs = example_calls[index] # load the relevant example audio

Step 1: the right signal_level

In the given audio segment, the first step is to identify what is
background and what is signal. The signal of interest is identified as
being above a particular dB rms, as calculated y a moving dB rms window
of a user-defined window_size.

If we want high temporal resolution to segment out the call, we need a short
window_size. Let’s try out 0.5 and 2ms for now.

halfms_windowsize = int(fs*0.5*10**-3)
twoms_windowsize = halfms_windowsize*4
plt.figure()
ax = plt.subplot(211)
itsfm.plot_movingdbrms(audio, fs, window_size=halfms_windowsize)
itsfm.plot_movingdbrms(audio, fs, window_size=twoms_windowsize)

first_color = '#1f77b4'
second_color = '#ff7f0e'
custom_lines = [Line2D([0],[0], color=first_color),
 Line2D([1],[1],color=second_color),]
ax.legend(custom_lines, ['0.5ms', '2ms'])
plt.ylabel('Moving dB rms')
plt.subplot(212, sharex=ax)
_ = itsfm.make_specgram(audio, fs);

[image: ../_images/sphx_glr_plot_0_detailed_001.png]
The fact that the 0.5ms moving rms profile is so ‘rough’ is already a bad
sign. The signal of interest is any region/s which are above or equal to
the signal_level. When the moving rms fluctuates so wildly, the relevant
signal region may be hard to capture because it keeps going above and
below the threshold - leading to many tiny ‘íslands’. Let’s choose the 2ms window_size
because it doesn’t fluctuate crazily and is also a relatively short time scale
in comparison the the signal duration. -40 dB rms seems to be a sensible value
when we compare the approximate start and end times of the signal with the dB rms profile.

keywords = {'segment_method':'pwvd',
 'signal_level':-40,
 'window_size':twoms_windowsize}

outputs = itsfm.segment_and_measure_call(audio, fs,**keywords)
output_inspector = itsfm.itsFMInspector(outputs, audio, fs)

output_inspector.visualise_geq_signallevel()

[image: ../_images/sphx_glr_plot_0_detailed_002.png]
Out:

(<AxesSubplot:xlabel='Time, s', ylabel='Frequency, Hz'>, <AxesSubplot:>)

Let’s check the output as it is right now

output_inspector.visualise_cffm_segmentation()

[image: ../_images/sphx_glr_plot_0_detailed_003.png]
Out:

(<AxesSubplot:>, <AxesSubplot:xlabel='Time, s', ylabel='Frequency, Hz'>)

Inspect initial outputs
The CF-FM segmentation is clearly not correct. There’s FM component recognised
at all - how is this happening? The reason it’s not happening is likely because
the fmrate has been misspecified or the frequency profile wasn’t
estimated correctly. Let’s view the frequency profile first.

output_inspector.visualise_frequency_profiles()

[image: ../_images/sphx_glr_plot_0_detailed_004.png]
Out:

(<AxesSubplot:xlabel='Time, s', ylabel='Frequency, Hz'>, <AxesSubplot:>)

The cleaned frequency profile seems to somehow ‘ignore’ the
downward FM sweep in the call. Why is this happening? The
‘flatness’ in the cleaned frequency profile is likely
coming from the spike detection. Spikes in the
frequency profile are detected when the ‘accelaration’ of
(the 2nd derivative) the frequency profile increases beyond
a threshold. Let’s check out the accelaration profile

output_inspector.visualise_accelaration()

[image: ../_images/sphx_glr_plot_0_detailed_005.png]
Out:

(<AxesSubplot:ylabel='Accelaration, kHz/ms^{2}'>, <AxesSubplot:xlabel='Time, s', ylabel='Frequency, Hz'>, <AxesSubplot:>)

The accelaration profile matches this suspicion. When a spikey
region is encountered in the frequency profile in the pwvd
frequency tracking - it backs up a bit and extrapolates the
slope according to what’s just behind the spikey region.
The ‘length’ of this backing up in seconds is decided by
the extrap_window, which is short for extrapolation
window. Let’s reduce the extrap_window and see if
the frequency is tracked better.

keywords['extrap_window'] = 50*10**-6
outputs_refined = itsfm.segment_and_measure_call(audio, fs,**keywords)
out_refined_inspector = itsfm.itsFMInspector(outputs_refined, audio, fs)
out_refined_inspector.visualise_frequency_profiles()

[image: ../_images/sphx_glr_plot_0_detailed_006.png]
Out:

(<AxesSubplot:xlabel='Time, s', ylabel='Frequency, Hz'>, <AxesSubplot:>)

So, we’ve managed to get a much better tracking by telling the
algorithm not to ‘backup’ too much to infer the trend
the frequency profile was heading in. It’s not perfect, but
it does recover the fact that there is an FM region. Remember this
issue came up because of the weird reflection of the CF part
that is of comparable intensity as the actual FM part itself.

How the CF-FM segmentation works

[image: ../_images/fmrate_workflow.png]
CF-FM segmentation occurs through a multi step process.
First the instantaneous frequency of the signal is estimated at a sample-level
resolution, the raw frequency profile - raw_fp. Then the raw_fp is refined
as it can be quite noisy because of well, noise, or abrupt changes in signal
level across the sound.

Minor jumps will be corrected to give rise to the
cleaned frequency profile - cleaned_fp. The cleaned_fp however, is
a very high-resolution look into the sound’s frequency profile. Even though
the temporal resolution is high, the spectral resolution is limited by the
size of the pwvd_window (refer to the original docs here). This limited
spectral resolution means each sample will not have a unique value. For instance
if the frequency of sound is increasing linearly with time, the cleaned_fp
may actually look like steps going up. These ‘steps’ cause issues while calculating
the rate of frequency modulation - fmrate, and so , the cleaned_fp is
actually downsampled and then upsampled by interpolation. This gives rise to
the fitted frequency profile - fitted_fp.

The fitted_fp captures the local trends and doesn’t have the step like nature of
cleaned_fp. If we were to actually measure frequency modulation from cleaned_fp
there’d be lots of 0 modulation regions and many very brief bursts of FM regions
wherever a ‘step’ rose or dropped. Thanks to the sample-wise unique values in fitted_fp we can now
calculate the local variation in frequency modulation across the sound.

Let’s now check the frequency profiles once more

out_refined_inspector.visualise_frequency_profiles()

[image: ../_images/sphx_glr_plot_0_detailed_007.png]
Out:

(<AxesSubplot:xlabel='Time, s', ylabel='Frequency, Hz'>, <AxesSubplot:>)

The raw and cleaned frequency profiles are very similar, though the ‘cleanliness’
in the cleaned_fp is visible especially because the frequency profile doesn’
wildly jump around towards the end of the call. The fitted_fp also
closely matches the cleaned_fp though it seems to rise later and drop faster.
This is because of the downsampling that happens to estimate the fmrate.
The rise time is a direct indicator of the downsampling factor, which samples
the cleaned_fp at periodic intervals, and is thus called sample_every. The
sample_every parameter defaults to 1% of the input signal duration. If the
frequency profiles broadly match the actual call as seen coarsely on a spectrogram.

Step 2: Check the fmrate profile

CF and FM parts of a call are segmented based on the rate of frequency modulation
they show. The fmrate is a np.array with the estimated frequency modulation
rate in kHz/ms. Yes, pay attention to the units, it’s not kHz/s, but kHz/ms!
Let’s take a look at the FM rate profile for this sound.

out_refined_inspector.visualise_fmrate()

[image: ../_images/sphx_glr_plot_0_detailed_008.png]
Out:

(<AxesSubplot:ylabel='FM rate, kHz/ms'>, <AxesSubplot:xlabel='Time, s', ylabel='Frequency, Hz'>, <AxesSubplot:>)

Let’s compare this fmrate profile with the final CF-FM segmentation.

out_refined_inspector.visualise_cffm_segmentation()

[image: ../_images/sphx_glr_plot_0_detailed_009.png]
Out:

(<AxesSubplot:>, <AxesSubplot:xlabel='Time, s', ylabel='Frequency, Hz'>)

Something’s odd – even though the FM rate seems to be close to zero
near the actual FM parts, parts of it are still being classified as FM!! What’s happening.
Let’s take a closer look at the FM rate profile, but zoom in so the y-axis is
more limited. Let’s also overlay the CF-FM segmentation results
over this.

seg_out, call_parts, msmts = outputs_refined
cf, fm, info = seg_out

w,s,a = out_refined_inspector.visualise_fmrate()
w.set_ylim(0,5)
t_min, t_max = 0.01, 0.02
w.set_xlim(t_min, t_max)
s.set_xlim(t_min, t_max)
a.set_xlim(t_min, t_max)
w.plot()
itsfm.make_waveform(cf*4,fs)
itsfm.make_waveform(fm*4,fs)
plt.tight_layout()

[image: ../_images/sphx_glr_plot_0_detailed_010.png]
From this you can clearly see that the FM part correspond to tiny peaks in
the fmrate which reach around 1 kHz/ms. It may of course be no surprise
once you know the default fmrate_threshold is 1 kHz/ms. This rate doesn’
make sense for bat call FM portions as they have much high frequency modulation
rates. The easy way to estimate the relevant fmrate_threshold is to eyeball
the start and end frequencies of a call part and calculate the fm rate!

Step 3: Set a relevant fmrate_threshold

For this example call any FM rate above 0.5kHz/ms will allow a sensible segmentation of the CF and FM
parts. Lets set it more conservatively at 2kHz/ms, this will reduce false
positives. In general, for this particular call type, the FM sweep has an approximate
rate of 5-6kHz/ms, and so we should definitely be able to pick up the FM region
with a threshold of 2kHz/ms.

add an additional keyword argument
keywords['fmrate_threshold'] = 2.0 # kHz/ms

output_newfmr = itsfm.segment_and_measure_call(audio, fs,**keywords)

out_newfmr_insp = itsfm.itsFMInspector(output_newfmr, audio, fs)
out_newfmr_insp.visualise_cffm_segmentation()

[image: ../_images/sphx_glr_plot_0_detailed_011.png]
Out:

(<AxesSubplot:>, <AxesSubplot:xlabel='Time, s', ylabel='Frequency, Hz'>)

Summary

This tutorial exposed some of the messy details behind the
PWVD frequency tracking. In most cases, I hope you won’t need to
think so much about the parameter choices. However, some basic
playing around will definitely be necessary each time you’re handling
a new type of sound or recording type. Hopefully, this has either allowed
you to get a glimpse into the system. Do let me know if
there’s something (or everythin) is confusing, and not clear!

Total running time of the script: (0 minutes 14.127 seconds)

Download Python source code: plot_0_detailed.py

Download Jupyter notebook: plot_0_detailed.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

itsfm without coding

Not so comfortable coding in Python? There is an option to use itsfm
by specifying the parameters you’d like to use for a segment and measure
run. This means the sound will be segmented into FM and CF and measurements
(custom/inbuilt) will be done on the detected sound parts.

Running a batch file analysis

Remember to install the package as outlined in the main page. Running a batch file analysis is
as simple as typing the following command into the command line interface of your OS.
Remember to activate your conda/virtual environment if you’re using one before!

python -m itsfm -batchfile path_to_your_batchfile_here.csv

Outputs from a batch file analysis

	Diagnostic plots : The batch file analysis will produce a pdf for each audio snippet processed. This pdf will have a series of diagnostic plots in each page for later inspection.

	Measurement file : A common long-format measurement csv file will be output. Each row in the file corresponds to one segmented region and each
column corresponds to the default/custom measurements run on the segments.

The batch file

The batch file is a .csv file with the following layout

The basic idea is to give the same inputs that you would use while calling the itsfm.segment_and_measure_call
function. All non-default arguments can be input as columns in the batchfile. The names of the columns must match
the keyword used in a function call.

A simple batch file

Note : if a keyword argument is not expicitly specified as a column with filled in values, the default value for this argument will be used.

[image: _images/template_batchfile.JPG]

	audio_path : the path to the audio file

	start : What time into the audio file should the sound be read? Defaults to 0.

	stop : When does the relevant sound segment end? Defaults to the duration of the file.

	channel : integer value. If file is a multichannel file, then choose relevant channel. Note : channel numbers start from 1 onwards.

	segment_method : the CF-FM segmentation method to be used.

	window_size : integer value. Number of samples to be used to calculate the moving dB rms window.

	signal_level : float <=0. The value in dB rms (re 1) that defines a region of analysable signal.

A batch file is extensible

Depending on the extent of control you’d like to have on the analysis, you can add more arguments to control
the output. For instance, take a look at the batch file below. This shows an extension of the previous batch file.
In this particular batch file there are a whole bunch of other

[image: _images/template_batchfile_detailed.JPG]

	fmrate_threshold : float>0. The fm rate above which a region is consdered FM in kHz/ms.

	max_acc : float>0. The maximum acceleration that is allowed in the frequency profile. The acceleration is a proxy for how rough or spiky the frequency profile in a particular region. Values closer to 0 are better.

	tfr_cliprange : float>0. The maximum dynamic range allowed in a time-frequency representation in dB. See itsfm.frequency_tracking.generate_pwvd_frequency_profile

	fft_size : int>0. The number of FFT samples used to generate spectrograms in the final visualisations.

	measurements : str. accepts a simple list with comma separated inbuilt function names. The supported inbuilt measurement functions can be be seen by typing help(itsfm.measurement_functions)

Each row is independent

It is possible to use a combination of default and non-default values. Whether doing so is advisable or not is a situation-based call.
For instance, in the extended batch file above, a non-default fft_size is used for the first file, and the other files have above
have a default value.

Skip a row

There may be times when the raw data is truly bad (or empty, or missing) and you want to skip a particular row in the batchfile.
This can be done by add a ‘skip’ column, and adding True in that particular row. Remember to fill out the rest of
the rows with DEFAULT.

Run only a single row

To quickly test which parameters work best, you can also just run single examples by using the one_row argument. This approach allows
you to troubleshoot a single problematic audio clip and quickly change the parameters for that file until it makes sense or works.
The example below will run the 11th row in the batchfile.

$ python -m itsfm -batchfile template_batchfile.csv -one_row 10

Running parts of a batchfile

Stuff happens and an analysis run can stop anytime as it runs throug the batchfile because some of the parameters don’t make sense.
To continue from a desired row or run only a selected set of rows you can use the -from and -till arguments.

$ python -m itsfm -batchfile template_batchfile.csv -from 10

The example above will run the analysis from the 11th row and proceed till the last row of the batchfile.

$ python -m itsfm -batchfile template_batchfile.csv -till 10

The example above will run the analysis from the 1st till 11th row and proceed till the last row of the batchfile.

$ python -m itsfm -batchfile template_batchfile.csv -from 5 -till 10

The example above runs itsfm analysis from the 6th-11th rows of a batchfile.

Measurement file already exists

It is very likely that you may get this error message on trying to run a batchfile after the first run:

$ ValueError: The file: measurements_basic_batchfile.csv already exists- please move it elsewhere or rename it!

This is because only one measurement file is allowed to be there in the folder where batchfile processing is being done. This feature prevents the accidental overwriting of results! To prevent this error from appearing again, delete, rename or move the current measurements file.

Suppressing the ‘..already exists’ error

It can be irritating to encounter the ‘…already exists’ error while trying to maintain a fast back and forth between results and parameter values. To prevent this error from happening - just use the -del_measurement argument.
Set it to True and any file starting with measurement will be deleted before the actual itsfm run.

Warning : use this being aware that this involves file deletion! It’s fine if you plan to run the whole batchfile at one stretch later anyway.

$ python -m itsfm -batchfile template_batchfile.csv -batchfile yourbatchfilehere.csv -del_measurement True

Which argument/s can be specified?

The exact arguments that can be specified depend on which level you’d like to apply control, and therefore the relevant functions need
to be looked up. For instance, if I wanted to make sure the frequency profile of a sound was sampled every 1ms to generate the FM rate profile.
I’d look up the itsfm.segment.whole_audio_fmrate source code to find the sample_every optional argument. A column names sample_every
will allow the custom definition of a downsampling intensity for that row. In most cases the approach aligned above should work, especially if the parameter value is a float. Results may vary if the type of the csv file cell entry are mis-interpreted.

Accuracy Reports

This page has a collection of examples which illustrate the accuracy to which itsfm
does the different things its supposed to do. As of now I’ve only added the accuracy report for CF-FM calls.
Do make a pull request with accuracy reports for your sounds of interest!

[image: ../_images/sphx_glr_plot_0_cffm_accuracy_thumb.png]
CF-FM call segmentation accuracy

[image: ../_images/sphx_glr_z_0_run_horseshoe_bats_thumb.png]
Running CF-FM call segmentation

[image: ../_images/sphx_glr_z_1_gen_horseshoe_bats_thumb.png]
Generating the CF-FM synthetic calls

Download all examples in Python source code: gallery_accuracy_python.zip

Download all examples in Jupyter notebooks: gallery_accuracy_jupyter.zip

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here to download the full example code

CF-FM call segmentation accuracy

This page will illustrate the accuracy with which itsfm can segment CF-FM parts of a
CF-FM call. To see what a CF-FM call looks like check out the bat-call example
in the ‘Basic Examples’ page.

The synthetic data has already been generated and run with the segment_and_measure
function, and now we’ll compare the accuracy with which it has all happened.

A CF-FM bat call typically has three parts to it, 1) an ‘up’ FM, where the
frequency of the call increases, 2) a ‘CF’ part, where the frequency is
stable, and then 3) a ‘down’ FM, where the frequency drops. The synthetic
data is basically a set of CF-FM calls with a combination of upFM, downFM
and CF part durations, bandwidths,etc.

Here we will only be seeing if the durations of each of the segment parts have been picked
up properly or not. We will not be performing any accuracy assessments on
the exact parameters (eg. peak frequency, rms, etc) because it is assumed that
if the call parts can be identified by their durations then the measurements will
in turn be as expected.

There is no silence in the synthetic calls, and no noise too. This is the
situation which should provide the highest accuracy.

What happened before

To see more on the details of the generation and running of the synthetic data
see the modules CF/FM call segmentation and Generating the CF-FM synthetic calls

import itsfm
import matplotlib.pyplot as plt
plt.rcParams['agg.path.chunksize'] = 10000
import numpy as np
import pandas as pd
import seaborn as sns
import tqdm

obtained = pd.read_csv('obtained_pwvd_horseshoe_sim.csv')
synthesised = pd.read_csv('horseshoe_test_parameters.csv')

Let’s look at the obtained regions and their durations

obtained

We can see the output has each CF/FM region labelled by the order in which
they’re found. Let’s re-label these to match the names of the synthesised
call parameter dataframe. ‘upfm’ is fm1, ‘downfm’ is fm2.

obtained.columns = ['call_number','cf_duration',
 'upfm_duration', 'downfm_duration', 'other']

Let’s look at the synthetic call parameters. There’s a bunch of parameters
that’re not interesting for this accuracy exercise and so let’s remove them

synthesised

synthesised.columns

synth_regions = synthesised.loc[:,['cf_duration', 'upfm_duration','downfm_duration']]
synth_regions['other'] = np.nan
synth_regions['call_number'] = obtained['call_number']

Comparing the synthetic and the obtained results

We have the two datasets formatted properly, now let’s compare the
accuracy of itsfm.

accuracy = obtained/synth_regions
accuracy['call_number'] = obtained['call_number']

Overall accuracy of segmentation:

accuracy_reformat = accuracy.melt(id_vars=['call_number'],
 var_name='Region type',
 value_name='Accuracy')

accuracy_reformat = accuracy_reformat[accuracy_reformat['Region type']!='other']

plt.figure()

ax = sns.boxplot(x='Region type', y = 'Accuracy',
 data=accuracy_reformat)

ax = sns.swarmplot(x='Region type', y = 'Accuracy',
 data=accuracy_reformat,
 alpha=0.5)

[image: ../_images/sphx_glr_plot_0_cffm_accuracy_001.png]
Out:

/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-packages/seaborn/categorical.py:1296: UserWarning: 75.3% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.
 warnings.warn(msg, UserWarning)
/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-packages/seaborn/categorical.py:1296: UserWarning: 46.0% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.
 warnings.warn(msg, UserWarning)
/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-packages/seaborn/categorical.py:1296: UserWarning: 40.7% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.
 warnings.warn(msg, UserWarning)

Peak-percentage method accuracy

Now let’s take a look at the peak percentage method’s accuracy

obtained_pkpct = pd.read_csv('obtained_pkpct_horseshoe_sim.csv')

obtained_pkpct.head()

It can clearly be seen that there are some calls with multiple segments detected.
This multiplicity of segments typically results from false positive detections,
where the CF-FM ratio jumps above 0 spuriously for a few samples. Let’s take a look
at some of these situations.

def identify_valid_segmentations(df):
 '''
 Identifies if a segmentation output has valid (numeric)
 entries for cf1, fm1, fm2, and NaN for all other columns.

 Parameters

 df : pd.DataFrame
 with at least the following column names, 'cf1','fm1','fm2'

 Returns

 valid_segmentation: bool.
 True, if the segmentation is valid.
 '''
 all_columns = df.columns
 target_columns = ['cf1','fm1','fm2']
 rest_columns = set(all_columns)-set(target_columns)
 rest_columns = rest_columns - set(['call_number'])

 valid_cf1fm1fm2 = lambda row, target_columns: np.all([~np.isnan(row[each]) for each in target_columns])
 all_otherrows_nan = lambda row, rest_columns: np.all([np.isnan(row[each]) for each in rest_columns])

 all_valid_rows = np.zeros(df.shape[0],dtype=bool)
 for i, row in df.iterrows():
 all_valid_rows[i] = np.all([valid_cf1fm1fm2(row, target_columns),
 all_otherrows_nan(row, rest_columns)])
 return all_valid_rows

calls_w_3segs = identify_valid_segmentations(obtained_pkpct)

print(f'{np.sum(calls_w_3segs)/calls_w_3segs.size} % of calls have 3 segments')

Out:

0.9444444444444444 % of calls have 3 segments

6% of calls don’t have 3 components - let’s remove these poorly segmented calls and
quantify their segmentation accuracy.

pkpct_well_segmented = obtained_pkpct.loc[calls_w_3segs,:]
pkpct_well_segmented = pkpct_well_segmented.drop(['cf2','fm3','fm4'],axis=1)

pkpct_well_segmented.columns = ['call_number','cf_duration',
 'upfm_duration', 'downfm_duration', 'other']

pkpct_accuracy = pkpct_well_segmented/synth_regions.loc[calls_w_3segs,:]

Overall accuracy of segmentation:
pkpct_accuracy_reformat = pkpct_accuracy.melt(id_vars=['call_number'],
 var_name='Region type',
 value_name='Accuracy')
pkpct_accuracy_reformat = pkpct_accuracy_reformat[pkpct_accuracy_reformat['Region type']!='other']

plt.figure()
ax = sns.violinplot(x='Region type', y = 'Accuracy',
 data=pkpct_accuracy_reformat)

ax = sns.swarmplot(x='Region type', y = 'Accuracy',
 data=pkpct_accuracy_reformat,
 alpha=0.5)

[image: ../_images/sphx_glr_plot_0_cffm_accuracy_002.png]
Out:

/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-packages/seaborn/categorical.py:1296: UserWarning: 51.6% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.
 warnings.warn(msg, UserWarning)
/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-packages/seaborn/categorical.py:1296: UserWarning: 19.0% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.
 warnings.warn(msg, UserWarning)
/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-packages/seaborn/categorical.py:1296: UserWarning: 26.8% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.
 warnings.warn(msg, UserWarning)

Putting it all together: PWVD vs peak percentage

pwvd_accuracy = accuracy_reformat.copy()
pwvd_accuracy['method'] = 'pwvd'

pkpct_accuracy = pkpct_accuracy_reformat.copy()
pkpct_accuracy['method'] = 'pkpct'

both_accuracy = pd.concat([pwvd_accuracy, pkpct_accuracy])
both_accuracy['combined_id'] = both_accuracy['Region type']+both_accuracy['method']

grouped_accuracy = both_accuracy.groupby(['Region type','method'])

plt.figure(figsize=(8,6))
ax = sns.swarmplot(x='Region type', y = 'Accuracy',
 data=both_accuracy, hue='method',hue_order=["pwvd", "pkpct"],
 dodge=True,alpha=0.5, s=3)

ax2 = sns.violinplot(x='Region type', y = 'Accuracy',
 data=both_accuracy, hue='method',hue_order=["pwvd", "pkpct"],
 dodge=True,alpha=0.5, s=2.5)
ax2.legend_.remove()
handles, labels = ax2.get_legend_handles_labels() # thanks Ffisegydd@ https://stackoverflow.com/a/35539098
l = plt.legend(handles[0:2], ['PWVD','Peak percentage'], loc=2, fontsize=11,
 borderaxespad=0., frameon=False)

plt.xticks([0,1,2],['CF','iFM','tFM'], fontsize=11)
plt.xlabel('Call component',fontsize=12);plt.ylabel('Accuracy of segmentation, $\\frac{obtained}{actual}$',fontsize=12);
plt.yticks(fontsize=11)
plt.ylim(0,1.5)
plt.tight_layout()
plt.savefig('pwvd-pkpct-comparison.png')

[image: ../_images/sphx_glr_plot_0_cffm_accuracy_003.png]
Out:

/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-packages/seaborn/categorical.py:1296: UserWarning: 60.5% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.
 warnings.warn(msg, UserWarning)
/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-packages/seaborn/categorical.py:1296: UserWarning: 37.3% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.
 warnings.warn(msg, UserWarning)
/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-packages/seaborn/categorical.py:1296: UserWarning: 32.1% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.
 warnings.warn(msg, UserWarning)
/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-packages/seaborn/categorical.py:1296: UserWarning: 11.1% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.
 warnings.warn(msg, UserWarning)
/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-packages/seaborn/categorical.py:1296: UserWarning: 31.2% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.
 warnings.warn(msg, UserWarning)
/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-packages/seaborn/categorical.py:1296: UserWarning: 19.6% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.
 warnings.warn(msg, UserWarning)

What are the 95%ile limits of the accuracy?

accuracy_ranges = grouped_accuracy.apply(lambda X: np.nanpercentile(X['Accuracy'],[2.5,97.5]))
accuracy_ranges

Out:

Region type method
cf_duration pkpct [0.8994, 1.05945]
 pwvd [0.9392, 1.0218500000000001]
downfm_duration pkpct [0.648, 1.348]
 pwvd [0.8867499999999999, 1.208]
upfm_duration pkpct [0.624, 1.2999999999999998]
 pwvd [0.9179999999999999, 1.2416]
dtype: object

Troubleshooting the ‘bad’ fixes - what went wrong?

Some bad PWVD identifications

As we can see there are a few regions where the accuracy is very low, let’s
investigate which of these calls are doing badly.

poor_msmts = accuracy[accuracy['cf_duration']<0.5].index

Now, let’s troubleshooot this particular set of poor measurements fully.

simcall_params = pd.read_csv('horseshoe_test_parameters.csv')
obtained_params = pd.read_csv('obtained_pwvd_horseshoe_sim.csv')

obtained_params.loc[poor_msmts,:]

There are two CF regions being recognised, one of them is just extremely short.
Where is this coming from? Let’s take a look at the actual frequency tracking output,
by re-running the `itsfm` routine once more:

import h5py

f = h5py.File('horseshoe_test.hdf5', 'r')

fs = float(f['fs'][:])

parameters = {}
parameters['segment_method'] = 'pwvd'
parameters['window_size'] = int(fs*0.001)
parameters['fmrate_threshold'] = 2.0
parameters['max_acc'] = 10
parameters['extrap_window'] = 75*10**-6

raw_audio = {}

for call_num in tqdm.tqdm(poor_msmts.to_list()):
 synthetic_call = f[str(call_num)][:]
 raw_audio[str(call_num)] = synthetic_call
 output = itsfm.segment_and_measure_call(synthetic_call, fs, **parameters)

 seg_output, call_parts, measurements= output

 # # save the long format output into a wide format output to
 # # allow comparison
 # sub = measurements[['region_id', 'duration']]
 # sub['call_number'] = call_num
 # region_durations = sub.pivot(index='call_number',
 # columns='region_id', values='duration')
 # obtained.append(region_durations)

f.close()

call_num = str(poor_msmts[0])

plt.figure()
plt.subplot(211)
plt.specgram(raw_audio[call_num], Fs=fs)
plt.plot(np.linspace(0,raw_audio[call_num].size/fs,raw_audio[call_num].size),
 seg_output[2]['raw_fp'])
plt.plot(np.linspace(0,raw_audio[call_num].size/fs,raw_audio[call_num].size),
 seg_output[2]['fitted_fp'])
plt.plot(np.linspace(0,raw_audio[call_num].size/fs,raw_audio[call_num].size),
 seg_output[0]*4000,'w')
plt.plot(np.linspace(0,raw_audio[call_num].size/fs,raw_audio[call_num].size),
 seg_output[1]*4000,'k')
plt.subplot(212)
plt.plot(raw_audio[call_num])

plt.figure()
plt.subplot(311)
plt.plot(np.linspace(0,raw_audio[call_num].size/fs,raw_audio[call_num].size),
 seg_output[2]['raw_fp'])
plt.subplot(312)
plt.plot(np.linspace(0,raw_audio[call_num].size/fs,raw_audio[call_num].size),
 seg_output[2]['fmrate'])
#plt.plot(np.linspace(0,raw_audio[call_num].size/fs,raw_audio[call_num].size),
seg_output[0]*5,'k',label='CF')
#plt.plot(np.linspace(0,raw_audio[call_num].size/fs,raw_audio[call_num].size),
seg_output[1]*5,'r', label='FM')
plt.hlines(2, 0, raw_audio[call_num].size/fs, linestyle='dotted', alpha=0.5,
 label='2kHz/ms fm rate')
plt.legend()
plt.subplot(313)
plt.plot(raw_audio[call_num])

	[image: ../_images/sphx_glr_plot_0_cffm_accuracy_004.png]

	[image: ../_images/sphx_glr_plot_0_cffm_accuracy_005.png]

Out:

 0%| | 0/2 [00:00<?, ?it/s]
 50%|##### | 1/2 [00:01<00:01, 1.01s/it]
100%|##########| 2/2 [00:02<00:00, 1.01s/it]
100%|##########| 2/2 [00:02<00:00, 1.01s/it]

[<matplotlib.lines.Line2D object at 0x7f40e96ac190>]

Making some corrections to the PWVD output

Here, we can see that the ‘error’ is that the FM rate is very slightly below the
2 kHz/ms FM rate, and thus appears as a false CF region. This slight drop in
FM rate is also because of edge effects. The frequency profile correction methods
in place were able to recognise the odd spike in frequency profile and interpolate
between two regions with reliable frequency profiles. This interpolation thus lead
to a slight drop in the FM rate.

Considering that the CF measurement is actually there, but labelled as CF2,
let’s correct this labelling error and then see the final accuracy. We will not
attempt to compensate for this error by adjusting the iFM duration here.

corrected_obtained = obtained_params.copy()
for each in poor_msmts:
 corrected_obtained.loc[each,'cf1'] = corrected_obtained.loc[each,'cf2']
 corrected_obtained.loc[each,'other'] = np.nan

corrected_obtained = corrected_obtained.loc[:,corrected_obtained.columns!='cf2']

corrected_obtained.columns = ['call_number','cf_duration',
 'upfm_duration', 'downfm_duration', 'other']

corrected_accuracy = corrected_obtained/synth_regions
corrected_accuracy['call_number'] = corrected_obtained['call_number']
corrected_accuracy_reformat = corrected_accuracy.melt(id_vars=['call_number'],
 var_name='Region type',
 value_name='Accuracy')
corrected_accuracy_reformat = corrected_accuracy_reformat.loc[corrected_accuracy_reformat['Region type']!='other',:]

plt.figure()
ax = sns.boxplot(x='Region type', y = 'Accuracy',
 data=corrected_accuracy_reformat)

ax = sns.swarmplot(x='Region type', y = 'Accuracy',
 data=corrected_accuracy_reformat,
 alpha=0.5)

[image: ../_images/sphx_glr_plot_0_cffm_accuracy_006.png]
Out:

/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-packages/seaborn/categorical.py:1296: UserWarning: 47.8% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.
 warnings.warn(msg, UserWarning)
/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-packages/seaborn/categorical.py:1296: UserWarning: 14.5% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.
 warnings.warn(msg, UserWarning)
/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-packages/seaborn/categorical.py:1296: UserWarning: 19.8% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.
 warnings.warn(msg, UserWarning)

Total running time of the script: (0 minutes 8.912 seconds)

Download Python source code: plot_0_cffm_accuracy.py

Download Jupyter notebook: plot_0_cffm_accuracy.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here to download the full example code

Running CF-FM call segmentation

Here we will run the segment_and_measure function and store the
results of how long each Cf/FM segment is.

Dataset creation

The synthetic dataset has already been created in a separate module.
See ‘Generating the CF-FM synthetic calls’ in the main page.

It can take long

We’re running a few hundred synthetic audio clips with a few seconds (1-10s)
needed per iteration. This could mean, it might take a while(5,10 or more minutes)!

import h5py
import itsfm
import pandas as pd
from tqdm import tqdm

Now, let’s load each synthetic call and proceed to save the
results from the PWVD and peak-percentage based methods.

FM rate based segmentation

obtained = []

f = h5py.File('horseshoe_test.hdf5', 'r')
synthesised = pd.read_csv('horseshoe_test_parameters.csv')

fs = float(f['fs'][:])

parameters = {}
parameters['segment_method'] = 'pwvd'
parameters['window_size'] = int(fs*0.001)
parameters['fmrate_threshold'] = 2.0
parameters['max_acc'] = 10
parameters['extrap_window'] = 75*10**-6

for call_num in tqdm(range(synthesised.shape[0])):
 synthetic_call = f[str(call_num)][:]
 output = itsfm.segment_and_measure_call(synthetic_call, fs, **parameters)

 seg_output, call_parts, measurements= output
 # save the long format output into a wide format output to
 # allow comparison
 sub = measurements[['region_id', 'duration']]
 sub['call_number'] = call_num
 region_durations = sub.pivot(index='call_number',
 columns='region_id', values='duration')
 obtained.append(region_durations)

all_obtained = pd.concat(obtained)

all_obtained.to_csv('obtained_pwvd_horseshoe_sim.csv')

Peak-percentage based segmentation

pkpctg_parameters = {}
pkpctg_parameters['segment_method'] = 'peak_percentage'
pkpctg_parameters['peak_percentage'] = 0.99
pkpctg_parameters['window_size'] = 125
pkpctg_parameters['double_pass'] = True

pkpct_obtained = []

for call_num in tqdm(range(synthesised.shape[0])):
 synthetic_call = f[str(call_num)][:]
 output = itsfm.segment_and_measure_call(synthetic_call, fs, **pkpctg_parameters)

 seg_output, call_parts, measurements= output
 # save the long format output into a wide format output to
 # allow comparison
 sub = measurements[['region_id', 'duration']]
 sub['call_number'] = call_num
 region_durations = sub.pivot(index='call_number',
 columns='region_id', values='duration')
 pkpct_obtained.append(region_durations)

f.close()

pk_pctage = pd.concat(pkpct_obtained)

pk_pctage.to_csv('obtained_pkpct_horseshoe_sim.csv')

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: z_0_run_horseshoe_bats.py

Download Jupyter notebook: z_0_run_horseshoe_bats.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here to download the full example code

Generating the CF-FM synthetic calls

Module that creates the data for accuracy testing horseshoe bat type calls

import h5py
from itsfm.simulate_calls import make_cffm_call
import numpy as np
import pandas as pd
import scipy.signal as signal
from tqdm import tqdm

cf_durations = [0.005, 0.010, 0.015]
cf_peakfreq = [40000, 60000, 90000]
fm_durations = [0.001, 0.002]
fm_bw = [5000, 10000, 20000]

all_combinations = np.array(np.meshgrid(cf_peakfreq, cf_durations,
 fm_bw,fm_durations,
 np.flip(fm_bw),np.flip(fm_durations)))
all_params = all_combinations.flatten().reshape(6,-1).T

col_names = ['cf_peak_frequency', 'cf_duration',
 'upfm_bw', 'upfm_duration',
 'downfm_bw', 'downfm_duration']

parameter_space = pd.DataFrame(all_params, columns=col_names)
parameter_space['upfm_terminal_frequency'] = parameter_space['cf_peak_frequency'] - parameter_space['upfm_bw']
parameter_space['downfm_terminal_frequency'] = parameter_space['cf_peak_frequency'] - parameter_space['downfm_bw']

parameter_columns = ['cf_peak_frequency', 'cf_duration',
 'upfm_terminal_frequency', 'upfm_duration',
 'downfm_terminal_frequency', 'downfm_duration']

all_calls = {}
for row_number, parameters in tqdm(parameter_space.iterrows(),
 total=parameter_space.shape[0]):

 cf_peak, cf_durn, upfm_terminal, upfm_durn, downfm_terminal, downfm_durn = parameters[parameter_columns]
 call_parameters = {'cf':(cf_peak, cf_durn),
 'upfm':(upfm_terminal, upfm_durn),
 'downfm':(downfm_terminal, downfm_durn),
 }

 fs = 250*10**3 # 500kHz sampling rate
 synthetic_call, _ = make_cffm_call(call_parameters, fs)
 synthetic_call *= signal.tukey(synthetic_call.size, 0.1)
 all_calls[row_number] = synthetic_call

now save the data into an hdf5 file
with h5py.File('horseshoe_test.hdf5','w') as f:
 for index, audio in all_calls.items():
 f.create_dataset(str(index), data=audio)
 f.create_dataset('fs', data=np.array([fs]))
parameter_space.to_csv('horseshoe_test_parameters.csv')

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: z_1_gen_horseshoe_bats.py

Download Jupyter notebook: z_1_gen_horseshoe_bats.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Common Errors

Here are the most common errors and the probable causes for them. When I use the word ‘bad’ here, I mean it
in the sense of bad for that particular signal! Especially while analysing bioacoustic recordings, a parameter
value that works for one recording may not necessarily work for another one!

1. Bad signal_level

$ ValueError: No regions above signal level found!

Easy, reduce the signal_level and try again.

2. Bad signal_level

$ IndexError: only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) and integer or boolean arrays are valid indices

This region is caused by a very small region of the signal being selected. The PWVD transform works by choosing a small window of samples
on the left and right of the current sample. If the region above signal_level is very small, and not greater than this small window
of samples this error is raised. By default, the isfm window size is set to the numebr of samples corresponding to 1ms.

Alter signal_level or window_size to get a more continuous moving dB rms profile. See below also.

3. Bad signal_level or window_size

$ ValueError: Shape of array too small to calculate a numerical gradient, at least (edge_order + 1) elements are required

The actual signal in an audio file is detected by the segment of audio that’s above a user-defined signal_level. When the
signal_level is set poorly or results in very short chunks of audio (<3 samples), then typically this error is thrown:

This means there’s a very short audio segment that’s above the signal_level. This typically happens because the moving dB rms profile
is too spiky, which means the signal level fluctuates very quickly above and below the threshold. The new signal_level is best re-set
after inspecting the moving dB rms profile.

The two options to fix this error are:

	increase window_size to get a smoother moving dB rms profile

	set a new signal_level which will make sure the moving dB rms profile is above it and matches the duration of the original signal

4. Bad signal_level or window_size

The FM rate profile of a sound is calculated by down-sampling the cleaned frequency
profile. The down-sampling is done by taking a sample every now and then as defined
byt the inter-sample duration. The inter-sample duration typically defaults to 1 percent of the frequency profiles length. When a bad signal level is given, there
can be very short audio segments that are detected, and thus when the FM rate needs
to be calculated, things break because 1% of an already very short sound may be
less than the inter-sample duration itself – and therefore this message.

$ ValueError: The suggested duration 3.16e-06 is less than the inter-sample distance (1/fs): 4e-06

Alter the signal_level or window_size to get a more continuous dB rms profile
of the sound.

Anomaly spans whole array

$ ValueError: The anomaly spans the whole array - please check again

“Anomalies” in the itsfm package are regions in the frequency profile which are particularly rough. This means the
accelaration of the frequency profile has gone beyond the max_acc threshold value. Most of the time anomalies
are small parts of the original signal. However, there may be times when an anomalous region spans the whole
signal – and thus this warning.

A closer inspection of this particular audio file may reveal more.

	Reduce the signal_level for this particular audio. When the signal_level is set too high, the frequency
profile of irrelevant parts may be getting analysed, leading to odd and rough frequency profiles.

API : The user interface

User-friendly top-level functions which allow the user to handle

	Call-background segmentation

	CF-FM call part segmentation

	Measurement of CF-FM audio parts

Let’s take a look at an example where we [TO BE COMPLETED!!!]

import scipy.signal as signal
from itsfm.user_interface import segment_and_measure_call
from itsfm.view_horseshoebat_call import *
from itsfm.simulate_calls import make_cffm_call

create synthetic call
call_parameters = {'cf':(100000, 0.01),
 'upfm':(80000, 0.002),
 'downfm':(60000, 0.003),
 }

fs = 500*10**3 # 500kHz sampling rate
synthetic_call, freq_profile = make_cffm_call(call_parameters, fs)

window and reduce overall signal level
synthetic_call *= signal.tukey(synthetic_call.size, 0.1)
synthetic_call *= 0.75

measuring a well-selected call (without silent background)

measuing a call with a silent background

and add 2ms of additional background_noise of ~ -60dBrms
samples_1ms = int(fs*0.001)
final_size = synthetic_call.size + samples_1ms*2
call_with_noise = np.random.normal(0,10**(-60/20.0),final_size)
call_with_noise[samples_1ms:-samples_1ms] += synthetic_call

#

seg_and_msmts = segment_and_measure_call(call_with_noise, fs,
 segment_from_background=True)
call_segmentation, call_parts, measurements, backg_segment = seg_and_msmts

	
itsfm.user_interface.segment_and_measure_call(main_call, fs, segment_from_background=False, **kwargs)[source]

	Segments the CF and FM parts of a call and then
proceeds to measure their characteristics. If required,
also segments call from background.

	Parameters

	
	main_call (np.array) –

	fs (float>0) – sampling rate in Hz

	segment_from_background (boolean) – Whether to segment the call in the main_call audio.
Defaults to False.

	Keyword Arguments

	
	further keyword arguments see segment_call_from_background, (For) –

	and measure_hbc_call (segment_call_into_cf_fm) –

	Returns

	
	segmentation_outputs (tuple) – The outputs of segment_call_into_cf_fm in a tuple

	call_parts_audio (dictionary) – Dictionary with numbered entries. If a sound has the following
order of Cf and FM: FM-CF-FM, then the keys will be
‘fm1’,’cf1’,’fm2’. The numbering is according to the chronological
order.

	measurements (pd.DataFrame) – All the measurements from the FM and CF parts.

Example

Let’s simulate a call to demonstrate how the measurement+segmentation
works.

>>> import scipy.signal as signal
>>> from itsfm.simulate_calls import make_cffm_call
>>> call_properties = {'cf':(80000, 0.01), 'upfm':(70000, 0.002),
 'downfm':(50000, 0.002)}
>>> fs = 500000
>>> call, profile = make_cffm_call(call_properties, fs)
>>> call *= signal.tukey(call.size, 0.1)
>>> plt.figure()
>>> plot1 = plt.subplot(211)
>>> plt.plot(profile)
>>> #segment the CF and FM parts with the default 'peak percentage' method.
>>> segm_out, call_parts, measures, _ = segment_and_measure_call(call,
 fs,
 segment_method='peak_percentage',
 peak_percentage=0.999,
 window_size=int(fs*0.5*10**-3))
>>> print(measures)

Now segment with frequency tracking implemented with the Pseudo Wigner Ville
Distribution, and the set the fmrate threshold to 10 kHz/ms

>>> segm_out, call_parts, measures, _ = segment_and_measure_call(call,
 fs,
 segment_method='pwvd',
 fmrate_threshold=10,
 medianfilter_length=0.5*10**-3,
)
>>> plt.subplot(212, sharex=plot1)
>>> plt.plot(segm_out[-1]['fmrate'])
>>> print(measures)

See also

itsfm.measure()

	
itsfm.user_interface.save_overview_graphs(all_subplots, analysis_name, file_name, index, **kwargs)[source]

	Saves overview graphs.

	Parameters

	
	all_subplots (list) – List with plt.subplot objects in them.
For each figure to be saved, one subplot object is enough.

	analysis_name (str) – The name of the analysis. If this funciton is called
through a batchfile, then it becomes the name of the
batchfile

	file_name (str) –

	index (int, optional) – A numeric identifier for each graph. This is especially relevant
for analyses driven by batch files as there may be cases where the
calls are selected from the same audio file but in different parts.

	Returns

	

	Return type

	None

Notes

This function has the main side effect of saving all the input figures
into a pdf file with >1 pages (one page per plot) for the user to inspect
the results.

Example

import numpy as np

1st plot
plt.figure()
a = plt.subplot(211)
plt.plot([1,2,3])
b = plt.subplot(212)
plt.plot([5,4,3])

#2nd plot
plt.figure()
c = plt.subplot(121)
plt.plot(np.random.normal(0,1,100))
d = plt.subplot(122)
plt.plot(np.random.normal(0,1,10))

save_overview_graphs([a,c], ‘example_plots’, ‘example_file’,0)

API : Segmenting sounds into CF and FM

Module that segments the horseshoebat call into FM and CF parts
The primary logic of this

	
itsfm.segment.segment_call_into_cf_fm(call, fs, **kwargs)[source]

	Function which identifies regions into CF and FM based on the following process.

1. Candidate regions of CF and FM are first produced based on the segmentation
method chosen’.

2. These candidate regions are then refined based on the
user’s requirements (minimum length of region, maximum number of CF/FM
regions in the sound)

	The finalised CF and FM regions are output as Boolean arrays.

	Parameters

	
	call (np.array) – Audio with horseshoe bat call

	fs (float>0) – Frequency of sampling in Hz.

	segment_method (str, optional) – One of [‘peak_percentage’, ‘pwvd’, ‘inst_freq’].
Checkout ‘See Also’ for more information.
Defaults to ‘peak_percentage’

	refinement_method (function, str, optional) – The method used to refine the initial CF and FM
candidate regions according to the different constraints
and rules set by the user.

Defaults to ‘do_nothing’

	Returns

	
	cf_samples, fm_samples (np.array) – Boolean numpy array showing which of the samples belong
to the cf and the fm respectively.

	info (dictionary) – Post-processing information depending on
the methods used.

Example

Create a chirp in the middle of a somewhat silent recording

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from itsfm.simulate_calls import make_fm_chirp, make_tone
>>> from itsfm.view_horseshoebat_call import plot_movingdbrms
>>> from itsfm.view_horseshoebat_call import visualise_call, make_x_time
>>> from itsfm.view_horseshoebat_call import plot_cffm_segmentation
>>> fs = 44100
>>> start_f, end_f = 1000, 10000
>>> chirp = make_fm_chirp(start_f, end_f, 0.01, fs)
>>> tone_freq = 11000
>>> tone = make_tone(tone_freq, 0.01, fs)
>>> tone_start = 30000; tone_end = tone_start+tone.size
>>> rec = np.random.normal(0,10**(-50/20), 44100)
>>> chirp_start, chirp_end = 10000, 10000 + chirp.size
>>> rec[chirp_start:chirp_end] += chirp
>>> rec[tone_start:tone_end] += tone
>>> rec /= np.max(abs(rec))
>>> actual_fp = np.zeros(rec.size)
>>> actual_fp[chirp_start:chirp_end] = np.linspace(start_f, end_f, chirp.size)
>>> actual_fp[tone_start:tone_end] = np.tile(tone_freq, tone.size)

Track the frequency of the recording and segment it according to frequency
modulation

>>> cf, fm, info = segment_call_into_cf_fm(rec, fs, signal_level=-10,
 segment_method='pwvd',)

View the output and plot the segmentation results over it:
>>> plot_cffm_segmentation(cf, fm, rec, fs)

See also

segment_by_peak_percentage(), segment_by_pwvd(), segment_by_inst_frequency(), itsfm.refine_cfm_regions(), refine_cf_fm_candidates()

Notes

The post-processing information in the object info depends on the method
used.

	peak_percentagethe two keys ‘fm_re_cf’ and ‘cf_re_fm’ which are the
	relative dBrms profiles of FM with relation to the CF portion and vice versa

pwvd :

	
itsfm.segment.refine_cf_fm_candidates(refinement_method, cf_fm_candidates, fs, info, **kwargs)[source]

	Parses the refinement method, checks if its string or function
and calls the relevant objects.

	Parameters

	
	refinement_method (str/function) – A string from the list of inbuilt functions in the module
refine_cfm_regions or a user-defined function.
Defaults to do_nothing, an inbuilt function which
doesn’t returns the candidate Cf-fm regions without
alteration.

	cf_fm_candidates (list with 2 np.arrays) – Both np.arrays need to be Boolean and of the same size as the original
audio.

	fs (float>0) –

	info (dictionary) –

	Returns

	cf, fm – Boolean arrays wher True indicates the sample is of the corresponding
region.

	Return type

	np.array

	
itsfm.segment.segment_by_peak_percentage(call, fs, **kwargs)[source]

	This is ideal for calls with one clear CF section with the CF
portion being the highest frequency in the call: bat/bird CF-FM
calls which have on CF and one/two sweep section.

Calculates the peak frequency of the whole call and performs
low+high pass filtering at a frequency slightly lower than the peak frequency.

	Parameters

	
	call (np.array) –

	fs (float>0) –

	peak_percentage (0<float<1, optional) – This is the fraction of the peak at which low and high-pass filtering happens.
Defaults to 0.98.

	Returns

	
	cf_samples, fm_samples (np.array) – Boolean array with True indicating that sample has been categorised
as being CF and/or FM.

	info (dictionary) – With keys ‘fm_re_cf’ and ‘cf_re_fm’ indicating the relative
dBrms profiles of the candidate FM regions relative to Cf
and vice versa.

Notes

This method unsuited for audio with non-uniform call envelopes.
When there is high variation over the call envelope, the peak frequency
is likely to be miscalculated, and thus lead to wrong segmentation.

This method is somewhat inspired by the protocol in Schoeppler et al. 2018.
However, it differs in the important aspect of being done entirely in the
time domain. Schoeppler et al. 2018 use a spectrogram based method
to segment the CF and FM segments of H. armiger calls.

References

	[1] Schoeppler, D., Schnitzler, H. U., & Denzinger, A. (2018).
	Precise Doppler shift compensation in the hipposiderid bat,
Hipposideros armiger. Scientific Reports, 8(1), 1-11.

See also

itsfm.segment.pre_process_for_segmentation()

	
itsfm.segment.segment_by_pwvd(call, fs, **kwargs)[source]

	This method is technically more accurate in segmenting CF and FM portions
of a sound. The Pseudo-Wigner-Ville Distribution of the input signal
is generated.

	Parameters

	
	call (np.array) –

	fs (float>0) –

	fmrate_threshold (float >=0) – The threshold rate of frequency modulation in kHz/ms. Beyond this value a segment
of audio is considered a frequency modulated region.
Defaults to 1.0 kHz/ms

	Returns

	
	cf_samples, fm_samples (np.array) – Boolean array of same size as call indicating candidate CF and FM regions.

	info (dictionary) – See get_pwvd_frequency_profile for the keys it outputs in the info
dictioanry. In addition, another key ‘fmrate’ is also calculated
which has an np. array with the rate of frequency modulation across
the signal in kHz/ms.

Notes

This method may takes some time to run. It is computationally intensive.
This method may not work very well in the presence of multiple harmonics
or noise. Some basic tweaking of the optional parameters may be required.

See also

get_pwvd_frequency_profile()

Example

Let’s create a two component call with a CF and an FM part in it
>>> from itsfm.simulate_calls import make_tone, make_fm_chirp, silence
>>> from itsfm.view_horseshoebat_call import plot_cffm_segmentation
>>> from itsfm.view_horseshoebat_call import make_x_time
>>> fs = 22100
>>> tone = make_tone(5000, 0.01, fs)
>>> sweep = make_fm_chirp(1000, 6000, 0.005, fs)
>>> gap = silence(0.005, fs)
>>> full_call = np.concatenate((tone, gap, sweep))
>>> # reduce rms calculation window size because of low sampling rate!
>>> cf, fm, info = segment_by_pwvd(full_call,

	fs,
	window_size=10,
signal_level=-12,
sample_every=1*10**-3,
extrap_length=0.1*10**-3)

>>> w,s = plot_cffm_segmentation(cf, fm, full_call, fs)
>>> s.plot(make_x_time(cf,fs), info['fitted_fp'])

	
itsfm.segment.whole_audio_fmrate(whole_freq_profile, fs, **kwargs)[source]

	When a recording has multiple components to it, there are silences
in between. These silences/background noise portions are assigned
a value of 0 Hz.

When a ‘whole audio’ fm rate is naively calculated by taking the diff
of the whole frequency profile, there will be sudden jumps in the fm-rate
due to the silent parts with 0Hz and the sound segments with non-zero
segments. Despite these spikes being very short, they then propagate their
influence due to the median filtering that is later down downstream. This
essentially causes an increase of false positive FM segments because of the
apparent high fmrate.

To overcome the issues caused by the sudden zero to non-zero transitions
in frequency values, this function handles each non-zero sound segment
separately, and calculates the fmrate over each sound segment independently.

	Parameters

	
	whole_freq_profile (np.array) – Array with sample-level frequency values of the same size as the
audio.

	fs (float>0) –

	Returns

	
	fmrate (np.array) – The rate of frequency modulation in kHz/ms. Same size as whole_freq_profile
Regions in whole_freq_profile with 0 frequency are set to 0kHz/ms.

	fitted_frequency_profile (np.aray) – The downsampled, smoothed version of whole_freq_profile, of the same size.

Attention

The fmrate must be processed further downstream!
In the whole-audio fmrate array, all samples that were 0 frequency
in the original whole_freq_profile are set to 0 kHz/ms!!!

See also

calculate_fm_rate()

Example

Let’s make a synthetic multi-component sound with 2 FMs and 1 CF component.

>>> fs = 22100
>>> onems = int(0.001*fs)
>>> sweep1 = np.linspace(1000,2000,onems) # fmrate of 1kHz/ms
>>> tone = np.tile(3000, 2*onems) # CF part
>>> sweep2 = np.linspace(4000,10000,3*onems) # 2kHz/ms
>>> gap = np.zeros(10)
>>> freq_profile = np.concatenate((sweep1, gap, tone, gap, sweep2))
>>> fmrate, fit_freq_profile = whole_audio_fmrate(freq_profile, fs)

	
itsfm.segment.calculate_fm_rate(frequency_profile, fs, **kwargs)[source]

	A frequency profile is generally oversampled. This means that
there will be many repeated values and sometimes minor drops in
frequency over time. This leads to a higher FM rate than is actually
there when a sample-wise diff is performed.

This method downsamples the frequency profile, fits a polynomial
to it and then gets the smoothened frequency profile with unique values.

The sample-level FM rate can now be calculated reliably.

	Parameters

	
	frequency_profile (np.array) – Array of same size as the original audio. Each sample has
the estimated instantaneous frequency in Hz.

	fs (float>0) – Sampling rate in Hz

	medianfilter_length (float>0, optional) – The median filter kernel size which is used to filter out
the noise in the frequency profile.

	sample_every (float, optional) – For default see fit_polynomial_on_downsampled_version

	Returns

	fm_rate – Same size as frequency_profile. The rate of frequency modulation in
kHz/ms

	Return type

	np.array

See also

fit_polynomial_on_downsampled_version()

	
itsfm.segment.fit_polynomial_on_downsampled_version(frequency_profile, fs, **kwargs)[source]

	Chooses a subset of all points in the input frequency_profile
and fits a piecewise polynomial on it. The start and end of
the frequency profile are not altered, and chosen as they
are.

	Parameters

	
	frequency_profile (np.array) – The estimated instantaneous frequency in Hz at each sample.

	fs (float>0) –

	sample_every (float>0, optional) – The time gap between consecutive points.
Defaults to a calculated value which
corresponds to 1% of the frequency profiles
duration.

	interpolation_kind (int, optional) – The polynomial order to use while fitting the points.
Defaults to 1, which is a piecewise linear fit.

	Returns

	fitted – Same size as frequency_profile.

	Return type

	np.array

	
itsfm.segment.fraction_duration(input_array, fs, fraction)[source]

	calculates the duration that matches the
required fraction of the input array’s duration.

The fraction must be 0 < fraction < 1

	
itsfm.segment.check_relevant_duration(duration, fs)[source]

	checks that the duration is more than the inter-sample duration.

	
itsfm.segment.refine_candidate_regions()[source]

	Takes in candidate CF and FM regions and tries to satisfy the
constraints set by the user.

	
itsfm.segment.check_segment_cf_and_fm(cf_samples, fm_samples, fs, **kwargs)[source]

	

	
itsfm.segment.get_cf_region(cf_samples, fs, **kwargs)[source]

	TODO : generalise to multiple CF regions

	Parameters

	
	cf_samples (np.array) – Boolean with True indicating a Cf region.

	fs (float) –

	Returns

	cf_region – The longest continuous stretch

	Return type

	np.array

	
itsfm.segment.get_fm_regions(fm_samples, fs, **kwargs)[source]

	TODO : generalise to multiple FM regions
:param fm_samples: Boolean numpy array with candidate FM samples.
:type fm_samples: np.array
:param fs:
:type fs: float>0
:param min_fm_duration: minimum fm duration expected in seconds. Any fm segment lower than this

duration is considered to be a bad read and discarded.
Defaults to 0.5 milliseconds.

	Returns

	valid_fm – Boolean numpy array with the corrected fm samples.

	Return type

	np.array

	
itsfm.segment.segment_call_from_background(audio, fs, **kwargs)[source]

	Performs a wavelet transform to track the signal within the relevant portion of the bandwidth.

This methods broadly works by summing up all the signal content
above the `lowest_relevant_frequency` using a continuous wavelet transform.

If the call-background segmentation doesn’t work well it’s probably due
to one of these things:

	Incorrect background_threshold : Play around with different background_threshold values.

	Incorrect lowest_relevant_frequency : If the lowest relevant frequency is set outside of the signal’s actual frequency range, then the segmentation will fail.
Try lower this parameter till you’re sure all of the signal’s spectral range is above it.

	Low signal spectral range : This method uses a continuous wavelet transform to localise the relevant signal. Wavelet transforms have high temporal resolution
in for high frequencies, but lower temporal resolutions for lower frequencies.
If your signal is dominantly low-frequency, try resampling it to a lower
sampling rate and see if this works?

If the above tricks don’t work, then try bandpassing your signal - may be it’s
an issue with the in-band signal to noise ratio.

	Parameters

	
	audio (np.array) –

	fs (float>0) – Frequency of sampling in Hertz.

	lowest_relevant_freq (float>0, optional) – The lowest frequency band in Hz whose coefficients will be tracked.
The coefficients of all frequencies in the signal >= the lowest relevant
frequency are tracked. This is the lowest possible frequency the signal can take. It is best to give a few kHz of berth.
Defaults to 35kHz.

	background_threshold (float<0, optional) – The relative threshold which is used to define the background. The segmentation is
performed by selecting the region that is above background_threshold dB relative
to the max dB rms value in the audio.
Defaults to -20 dB

	wavelet_type (str, optional) – The type of wavelet which will be used for the continuous wavelet transform.
Run pywt.wavelist(kind=’continuous’) for all possible types in case the default
doesn’t seem to work.
Defaults to mexican hat, ‘mexh’

	scales (array-like, optional) – The scales to be used for the continuous wavelet transform.
Defaults to np.arange(1,10).

	Returns

	
	potential_region (np.array) – A boolean numpy array where True corresponds to the regions which
are call samples, and False are the background samples. The single
longest continuous region is output.

	dbrms_profile (np.array) – The dB rms profile of the summed up wavelet transform for all
centre frequencies >= lowest_relevant_frequency.s

	Raises

	
	ValueError – When lowest_relevant_frequency is too high or not included in
 the centre frequencies of the default/input scales for
 wavelet transforms.

	IncorrectThreshold – When the dynamic range of the relevant part of the signal is smaller
 or equal to the background_threshold.

	
itsfm.segment.identify_valid_regions(condition_satisfied, num_expected_regions=1)[source]

	
	Parameters

	
	condition_satisfied (np.array) – Boolean numpy array with samples either being True or False.
The array may have multiple regions which satisfy a conditions (True)
separated by smaller regions which don’t (False).

	num_expected_regions (int > 0) – The number of expected regions which satisfy a condition.
If >2, then the first two longest continuous regions will be returned,
and the smaller regions will be suppressed/eliminated.
Defaults to 1.

	Returns

	valid_regions – Boolean array which identifies the regions with the longest
contiguous lengths.

	Return type

	np.array

	
itsfm.segment.identify_maximum_contiguous_regions(condition_satisfied, number_regions_of_interest=1)[source]

	Given a Boolean array - this function identifies regions of contiguous samples that
are true and labels each with its own region_number.

	Parameters

	
	condition_satisfied (np.array) – Numpy array with Boolean (True/False) entries for each sample.

	number_regions_of_interest (integer > 1) – Number of contiguous regions which are to be detected. The region ids
are output in descending order (longest–>shortest).
Defaults to 1.

	Returns

	
	region_numbers (list) – List with numeric IDs given to each contiguous region which is True.

	region_id_and_samples (np.array) – Two columns numpy array. Column 0 has the region_number, and Column 1 has
the individual samples that belong to each region_number.

:raises ValueError : This happens if the condition_satisfied array has no entries that are True.:

	
itsfm.segment.pre_process_for_segmentation(call, fs, **kwargs)[source]

	Performs a series of steps on a raw cf call before passing it for temporal segmentation
into cf and fm.
Step 1: find peak frequency
Step 2: lowpass (fm_audio) and highpass (cf_audio) below

a fixed percentage of the peak frequency

Step 3: calculate the moving dB of the fm and cf audio

	Parameters

	
	call (np.array) –

	fs (int.) – Frequency of sampling in Hertz

	peak_percentage (0<float<1, optional) – This is the fraction of the peak at which low and high-pass filtering happens.
Defaults to 0.98.

	lowpass (optional) – Custom lowpass filtering coefficients. See low_and_highpass_around_threshold

	highpass – Custom highpass filtering coefficients. See low_and_highpass_around_threshold

	window_size (integer, optional) – The window size in samples over which the moving rms of the low+high passed signals will be calculated.
For default value see documentation of moving_rms

	Returns

	cf_dbrms, fm_dbrms – The dB rms profile of the high + low passed versions of the input audio.

	Return type

	np.arrays

See also

itsfm.segment.low_and_highpass_around_threshold()

	
itsfm.segment.low_and_highpass_around_threshold(audio, fs, threshold_frequency, **kwargs)[source]

	Make two version of an audio clip: the low pass and high pass versions.

	Parameters

	
	audio (np.array) –

	fs (float>0) – Frequency of sampling in Hz

	threshold_frequency (float>0) – The frequency at which the lowpass and highpass operations are
be done.

	lowpass,highpass (ndarrays, optional) – The b & a polynomials of an IIR filter which define the
lowpass and highpass filters.
Defaults to a second order elliptical filter with rp of 3dB
and rs of 10 dB. See signal.ellip for more details of rp and
rs.

	pad_duration (float>0, optional) – Zero-padding duration in seconds before low+high pass filtering.
Defaults to 0.1 seconds.

	double_pass (bool, optional) – Low/high pass filter the audio twice. This has been noticed to help
with segmentation accuracy, especially for calls with short CF/FM
segments where edge effects are particularly noticeable. Defaults to
False

	Returns

	lp_audio, hp_audio – The low and high pass filtered versions of the input audio.

	Return type

	np.arrays

	
itsfm.segment.get_thresholds_re_max(cf_dbrms, fm_dbrms)[source]

	

	
itsfm.segment.calc_proper_kernel_size(durn, fs)[source]

	scipy.signal.medfilt requires an odd number of samples as
kernel_size. This function calculates the number of samples
for a given duration which is odd and is close to the
required duration.

	Parameters

	
	durn (float) – Duration in seconds.

	fs (float) – Sampling rate in Hz

	Returns

	samples – Number of odd samples that is equal to or little
less (by one sample) than the input duration.

	Return type

	int

	
itsfm.segment.resize_by_adding_one_sample(input_signal, original_signal, **kwargs)[source]

	Resizes the input_signal to the same size as the original signal by repeating one
sample value. The sample value can either the last or the first sample of the input_signal.

	
itsfm.segment.median_filter(input_signal, fs, **kwargs)[source]

	Median filters a signal according to a user-settable
window size.

	Parameters

	
	input_signal (np.array) –

	fs (float) – Sampling rate in Hz.

	medianfilter_size (float, optional) – The window size in seconds. Defaults to 0.001 seconds.

	Returns

	med_filtered – Median filtered version of the input_signal.

	Return type

	np.array

	
itsfm.segment.identify_cf_ish_regions(frequency_profile, fs, **kwargs)[source]

	Identifies CF regions by comparing the rate of frequency modulation
across the signal. If the frequency modulation within a region of
the signal is less than the limit then it is considered a CF region.

	Parameters

	
	frequency_profile (np.array) – The instantaneous frequency of the signal over time in Hz.

	fm_limit (float, optional) – The maximum rate of frequency modulation in Hz/s.
Defaults to 1000 Hz/s

	medianfilter_size (float, optional) –

	Returns

	
	cfish_regions (np.array) – Boolean array where True indicates a low FM rate region.
The output may still need to be cleaned before final use.

	clean_fmrate_resized

Notes

If you’re used to reading FM modulation rates in kHz/ms then just
follow this relation to get the required modulation rate in Hz/s:

X kHz/ms = (X Hz/s)* 10^-6

OR

X Hz/s = (X kHz/ms) * 10^6

See also

median_filter()

	
itsfm.segment.segment_cf_regions(audio, fs, **kwargs)[source]

	

	
exception itsfm.segment.CFIdentificationError[source]

	

	
exception itsfm.segment.IncorrectThreshold[source]

	

API: Measuring sounds

Module that measures each continuous CF and FM segment with either
inbuilt or user-defined functions.

	
itsfm.measure.measure_hbc_call(call, fs, cf, fm, **kwargs)[source]

	Performs common or unique measurements on each of the Cf
and FM segments detected.

	Parameters

	
	audio (np.array) –

	fs (float>0.) – Frequency of sampling in Hz.

	cf (np.array) – Boolean array with True indicating samples that define the CF

	fm (np.array) – Boolean array with True indicating samples that define the FM

	measurements (list, optional) – List with measurement functions

	Returns

	measurement_values – A wide format dataframe with one row corresponding to all
the measured values for a CF or FM segment

	Return type

	pd.DataFrame

See also

itsfm.measurement_functions()

Example

Create a call with fs and make fake CF and FM segments

>>> fs = 1.0
>>> call = np.random.normal(0,1,100)
>>> cf = np.concatenate((np.tile(0, 50), np.tile(1,50))).astype('bool')
>>> fm = np.invert(cf)

Get the default measurements by not specifying any measurements explicitly.

>>> sound_segments, measures = measure_hbc_call(call, fs,
 cf, fm)
>>> print(measures)

And here’s an example with some custom functions.The default measurements
will appear in addition to the custom measurements.

>>> from itsfm.measurement_functions import measure_peak_amplitude, measure_peak_frequency
>>> custom_measures = [peak_frequency, measure_peak_amplitude]
>>> sound_segments, measures = measure_hbc_call(call, fs,
 cf, fm,
 measurements=custom_measures)

	
itsfm.measure.parse_cffm_segments(cf, fm)[source]

	Recognises continuous stretches of Cf and FM segments,
organises them into separate ‘objects’ and orders them in time.

	Parameters

	fm (cf,) – Boolean arrays indicating which samples are CF/FM.

	Returns

	cffm_regions_numbered – Each tuple corresponds to one CF or FM region in the audio.
The tuple has two entries 1) the region identifier, eg. ‘fm1’
and 2) the indices that correspond to the region eg. slice(1,50)

	Return type

	np.array with tuples.

Example

an example sound with two cfs and an fm in the middle

>>> cf = np.array([0,1,1,0,0,0,1,1,0]).astype('bool')
>>> fm = np.array([0,0,0,1,1,1,0,0,0]).astype('bool')
>>> ordered_regions = parse_cffm_segments(cf, fm)
>>> print(ordered_regions)
[['cf1', slice(1, 3, None)], ['fm1', slice(3, 6, None)],
 ['cf2', slice(6, 8, None)]]

	
itsfm.measure.perform_segment_measurements(full_sound, fs, segment, functions_to_apply, **kwargs)[source]

	Performs one or more measurements on a specific segment of a full audio
clip.

	Parameters

	
	full_sound (np.array) –

	fs (float>0) –

	segment (tuple) – First object is a string with the segment’s id, eg. ‘fm1’ or ‘cf2’
Second object is a slice with the indices of the segment, eg. slice(0,100)

	functions_to_apply (list of functions) – Each function must be a ‘measurement function’. A measurement function
is one that accepts a strict set of inputs. check See Also for more
details.

	Returns

	results – A single row with all the measurements results.
The first column is always the ‘regionid’, the rest of the columns
are measurement function dependent.

	Return type

	pd.DataFrame

Example

Here we’ll create a short segment and take the rms and the peak value of
the segment. The relevant_region is not an FM region, it is only labelled
so here to show how it works with the rest of the package!

>>> np.random.seed(909)
>>> audio = np.random.normal(0,1,100)
>>> relevant_region = ('fm1',slice(10,30))

The sampling rate doesn’t matter for the custom functions defined below,
but, it may be important for some other functions.

>>> fs = 1 # Hz
>>> from itsfm.measurement_functions import measure_rms, measure_peak
>>> results = perform_segment_measurements(audio, fs, relevant_region,
 [measure_rms, measure_peak])

	
itsfm.measure.find_regions(X)[source]

	

	
itsfm.measure.combine_and_order_regions(cf_slices, fm_slices)[source]

	

	
itsfm.measure.assign_cffm_regionids(cffm, cf_regions, fm_regions)[source]

	

	
itsfm.measure.common_measurements()[source]

	Loads the default common measurement set
for any region.

Measurement functions

This is a set of measurement functions which are used to measure various
things about a part of an audio. A measurement function is a specific kind of

function which accepts three arguments and outputs a dictionary.

What is a measurement function:

A measurement function is a specific kind of function which accepts three arguments and outputs a dictionary.
User-defined functions can be used to perform custom measurements on the segment of interest.

Measurement function parameters

	the full audio, a np.array

	the sampling rate, a float>0

	the segment, a slice object which defines the span
of the segment. For instance (‘fm1’, slice(0,100))

What needs to be returned:

A measurement function must return a dictionary with >1 keys that are strings
and items that can be easily incorporated into a Pandas DataFrame and viewed on
a csv file with ease. Ideal item types include strings, floats, or tuples.

See the source code of the built-in measurement functions below for an example of
how to satisfy the measurement function pattern.

Attention

Remember to name the output of the measurement function properly.
If the output key of one measurement function is the same as the
other, it will get overwritten in the final dictionary!

	
itsfm.measurement_functions.measure_rms(audio, fs, segment, **kwargs)[source]

	
See also

itsfm.signal_processing.rms()

	
itsfm.measurement_functions.measure_peak_amplitude(audio, fs, segment, **kwargs)[source]

	

	
itsfm.measurement_functions.start(audio, fs, segment, **kwargs)[source]

	

	
itsfm.measurement_functions.stop(audio, fs, segment, **kwargs)[source]

	

	
itsfm.measurement_functions.duration(audio, fs, segment, **kwargs)[source]

	

	
itsfm.measurement_functions.measure_peak_frequency(audio, fs, segment, **kwargs)[source]

	
See also

itsfm.signal_processing.get_peak_frequency()

	
itsfm.measurement_functions.measure_terminal_frequency(audio, fs, segment, **kwargs)[source]

	
See also

itsfm.get_terminal_frequency()

API : Viewing sounds, parameters and results

Bunch of functions which help in visualising data
and results

There is a common pattern in the naming of viewing functions.

	functions starting with ‘visualise’ include an overlay of
a particular output attribute on top of or with the
the original signal. For example visualise_sound

	functions starting with ‘plot’ are bare bones
plots with just the attribute on the y and time on the x.

	
class itsfm.view.itsFMInspector(segmeasure_out, whole_audio, fs, **kwargs)[source]

	Handles the output from measure_and_segment calls, and allows plotting
of the outputs.

	Parameters

	
	segmeasure_out (tuple) – Tuple object containing three other objects which are the output from segment_and_measure_call
1. segmentation_output : tuple

Tuple with the cf boolean array, fm boolean array and info dictioanry

	
	audio_partsdictionary
	Dictionary with call part labels and values as selected audio parts as np.arrays

	
	measurementspd.DataFrame
	A wide-formate dataframe with one row referring to meaurements done on one call part
eg. if a call has 3 parts (fm1, cf1, fm2), then there will be three columns and
N columns, if N measurements have been done.

	whole_audio (np.array) – The audio that was analysed.

	fs (float>0) – Sampling rate in Hz.

Notes

	Not all visualise methods may be supported. It depends on the segmentation method at hand.

	All visualise methods return one/multiple subplots that could be used and embellished further
for your own custom laying over.

	
visualise_fmrate()[source]

	Plots the spectrogram + FM rate profile in a 2 row plot

	
visualise_accelaration()[source]

	Plots the spectrogram + accelaration of the
frequency profile
in a 2 row plot

	
visualise_cffm_segmentation()[source]

	

	
visualise_frequency_profiles(fp_type='all')[source]

	Visualises either one or all of the frequency profiles that are present in the
info dictionary.
The function relies on picking up all keys in the info dictionary that end with ‘<>_fp’
pattern.

	Parameters

	fp_type (str/list with str's) – Needs to correspond to a key found in the info dictionary

	
visualise_pkpctage_profiles()[source]

	

	
visualise_geq_signallevel()[source]

	Some tracking/segmentation methods rely on using only
regions that are above a threshold, the signal_level
. A moving dB rms window is pass

ed, and only regions above it are

	
itsfm.view.check_call_background_segmentation(whole_call, fs, main_call_mask, **kwargs)[source]

	Visualises the main call selection

	Parameters

	
	whole_call (np.array) – Call audio

	fs (float>0) – Sampling rate in Hz

	main_call_mask (np.array) – Boolean array where True indicates the sample
is part of the main call, and False that it is not.

	Returns

	waveform, spec

	Return type

	pyplot.subplots

Notes

The appearance of the two subplots can be further changes by varying the
keyword arguments. For available keyword arguments see the visualise_sound
function.

	
itsfm.view.show_all_call_parts(only_call, call_parts, fs, **kwargs)[source]

	
	Parameters

	
	only_call (np.array) –

	call_parts (dictionary) – Dictionary with keys ‘cf’ and ‘fm’
The entry for ‘cf’ should only have one audio segment.
The entry for ‘fm’ can have multiple audio segments.

	fs (float>0) – Sampling rate in Hz.

	Returns

	

	Return type

	None

Notes

For further keyword arguments to customise the spectrograms
see documentation for make_specgram
This function does not return any output, it only produces a
figure with subplots.

	
itsfm.view.visualise_fmrate_profile(X, freq_profile, fs)[source]

	

	
itsfm.view.plot_accelaration_profile(X, fs)[source]

	Plots the frequency acclearation profile of a frequency
profile

	Parameters

	
	X (np.array) – The frequency profile with sample-level
estimates of frequency in Hz.

	fs (float>0) –

	Returns

	
	A plt.plot which can be used as an independent figure ot

	a subplot.

	
itsfm.view.plot_movingdbrms(X, fs, **kwargs)[source]

	

	
itsfm.view.visualise_sound(audio, fs, **kwargs)[source]

	
	Parameters

	
	audio –

	fs –

	fft_size (integer>0, optional) –

	Returns

	a0, a1

	Return type

	subplots

	
itsfm.view.make_specgram(audio, fs, **kwargs)[source]

	

	
itsfm.view.get_fftsize(fs, **kwargs)[source]

	

	
itsfm.view.make_overview_figure(call, fs, measurements, **kwargs)[source]

	

	
itsfm.view.plot_dbrms_cffmprofiles(seg_details, fs)[source]

	Makes a plot with CF anf FM dB rms profiles. This method only works for
peak-percentage based segmentation.

	Parameters

	
	seg_details (tuple) – Tuple with 3 entries. The third entry needs to be a dictionary with
at least the following keys : ‘cf_re_fm’ and ‘fm_re_cf’

	fs (float>0) – Sample rate in Hz

	Returns

	

	Return type

	matplotlib plot

API: support modules

Frequency tracking

Even though the spectrogram is one of the most dominant time-frequency
representation, there are whole class of alternate representations. This
module has the code which tracks the dominant frequency in a sound using
non-spectrogram methods.

The Pseudo Wigner Ville Distribution

The Pseudo Wigner Ville Distribution is an accurate but not so well known
method to represent a signal on the time-frequency axis[1]. This time-frequency
representation is implemented in the get_pwvd_frequency_profile.

References

[1] Cohen, L. (1995). Time-frequency analysis (Vol. 778). Prentice hall.

	
itsfm.frequency_tracking.get_pwvd_frequency_profile(input_signal, fs, **kwargs)[source]

	Generates a clean frequency profile through the PWVD.
The order of frequency profile processing is as follows:

	Split input signal into regions that are
greater or equal to the signal_level. This
speeds up the whole process of pwvd tracking
multiple sounds, and ignores the fainter samples.

	Generate PWVD for each above-noise region.

	Set regions below background noise to 0Hz

	Remove sudden spikes and set these regions to values
decided by interpolation between adjacent non-spike regions.

	Parameters

	
	input_signal (np.array) –

	fs (float) –

Notes

The fact that each signal part is split into independent
above-background segments and then frequency tracked can
have implications for frequency resolution. Short sounds
may end up with frequency profiles that have a lower
resolution than longer sounds. Each sound is handled separately
primarily for memory and speed considerations.

Example

Create two chirps in the middle of a somewhat silent recording

>>> import matplotlib.pyplot as plt
>>> from itsfm.simulate_calls import make_fm_chirp
>>> from itsfm.view_horseshoebat_call import plot_movingdbrms
>>> from itsfm.view_horseshoebat_call import visualise_call, make_x_time
>>> fs = 44100
>>> start_f, end_f = 1000, 10000
>>> chirp = make_fm_chirp(start_f, end_f, 0.01, fs)
>>> rec = np.random.normal(0,10**(-50/20), 22100)
>>> chirp1_start, chirp1_end = 10000, 10000 + chirp.size
>>> chirp2_start, chirp2_end = np.array([chirp1_start, chirp1_end])+int(fs*0.05)
>>> rec[chirp_start:chirp_end] += chirp
>>> rec[chirp2_start:chirp2_end] += chirp
>>> rec /= np.max(abs(rec))
>>> actual_fp = np.zeros(rec.size)
>>> actual_fp[chirp1_start:chirp1_end] = np.linspace(start_f, end_f, chirp.size)
>>> actual_fp[chirp2_start:chirp2_end] = np.linspace(start_f, end_f, chirp.size)

Check out the dB rms profile of the recording to figure out where the
noise floor is

>>> plot_movingdbrms(rec, fs)

>>> clean_fp, info = get_pwvd_frequency_profile(rec, fs,
 signal_level=-9,
 extrap_window=10**-3,
 max_acc = 0.6)
>>> plt.plot(clean_fp, label='obtained')
>>> plt.plot(actual_fp, label='actual')
>>> plt.legend()

Now, let’s overlay the obtained frequency profile onto a spectrogram to
check once more how well the dominant frequency has been tracked.

>>> w,s = visualise_call(rec, fs, fft_size=128)
>>> s.plot(make_x_time(clean_fp, fs), clean_fp)

See also

itsfm.signal_cleaning.smooth_over_potholes(), find_above_noise_regions()

	
itsfm.frequency_tracking.find_geq_signallevel(X, fs, **kwargs)[source]

	Find regions greater or equal to signal level

	
itsfm.frequency_tracking.clean_up_spikes(whole_freqeuncy_profile, fs, **kwargs)[source]

	
	Applies smooth_over_potholes on each non-zero frequency segment
	in the profile.

smooth_over_potholes

Let’s create a case with an FM and CF tone

>>> from itsfm.simulate_calls import make_tone, make_fm_chirp, silence
 >>> fs = 22100
 >>> tone = make_tone(5000, 0.01, fs)
 >>> sweep = make_fm_chirp(1000, 6000, 0.005, fs)
 >>> gap = silence(0.005, fs)
 >>> full_call = np.concatenate((tone, gap, sweep))

The raw frequency profile, with very noisy frequency estimates needs
to be further cleaned

>>> raw_fp, frequency_index = generate_pwvd_frequency_profile(full_call,
 fs)
>>> noise_supp_fp = noise_supp_fp = suppress_background_noise(raw_fp,
 full_call,
 window_size=25,
 background_noise=-30)

Even after the noisy parts have been suppressed, there’re still some
spikes caused by the

>>>

	
itsfm.frequency_tracking.generate_pwvd_frequency_profile(input_signal, fs, **kwargs)[source]

	Generates the raw instantaneous frequency estimate at each sample.
using the Pseudo Wigner Ville Distribution

	Parameters

	
	input_signal (np.array) –

	fs (float) –

	pwvd_filter (Boolean, optional) – Whether to perform median filtering with a 2D kernel.
Defaults to False

	pwvd_filter_size (int, optional) – The size of the square 2D kernel used to median filter the
initial PWVD time-frequency representation.

	pwvd_window (float>0, optional) – The duration of the window used in the PWVD. See pwvd_transform
for the default value.

	tfr_cliprange (float >0, optional) – The clip range in dB.
Clips all values in the abs(pwvd) time-frequency
representation to between max and max*10*(-tfr_cliprange/20.0).
Defaults to None, which does not alter the pwvd transform in anyway.

	Returns

	raw_frequency_profile, frequency_indx – Both outputs are the same size as input_signal.
raw_frequency_profile is the inst. frequency in Hz.
frequency_indx is the row index of the PWVD array.

	Return type

	np.array

See also

pwvd_transform(), track_peak_frequency_over_time(), itsfm.signal_cleaning.clip_tfr()

	
itsfm.frequency_tracking.pwvd_transform(input_signal, fs, **kwargs)[source]

	Converts the input signal into an analytical signal and then generates
the PWVD of the analytical signal.

Uses the PseudoWignerVilleDistribution class from the tftb package [1].

	Parameters

	
	input_signal (np.array) –

	fs (float) –

	pwvd_window_type (np.array, optional) – The window to be used for the pseudo wigner-ville distribution.
If not given, then a hanning signal is used of the default length.
The window given here supercedes the ‘window_length’ argument below.

	pwvd_window (float>0, optional) – The duration of the window used in the PWVD. Defaults to 0.001s

	Returns

	time_frequency_output – Two dimensional array with dimensions of NsamplesxNsamples, where
Nsamples is the number of samples in input_signal.

	Return type

	np.array

References

	[1] Jaidev Deshpande, tftb 0.1.1 ,Python module for time-frequency analysis,
	https://pypi.org/project/tftb/

	
itsfm.frequency_tracking.track_peak_frequency_over_time(input_signal, fs, time_freq_rep, **kwargs)[source]

	Tracks the lowest possible peak frequency. This ensures that the
lowest harmonic is being tracked in a multiharmonic signal with similar
levels across the harmonics.

EAch ‘column’ of the 2D PWVD is inspected for the lowest peak that crosses
a percentile threshold, and this is then taken as the peak frequency.

	Parameters

	
	input_signal (np.array) –

	fs (float>0) –

	time_freq_rep (np.array) – 2D array with the PWVD representation.

	percentile (0<float<100, optional) –

	Returns

	peak_freqs, peak_inds – Arrays with same size as the input_signal. peak_freqs is the
frequencies in Hz, peak_inds is the row index.

	Return type

	np.array

See also

find_lowest_intense_harmonic_across_TFR(), get_most_intense_harmonic()

	
itsfm.frequency_tracking.find_lowest_intense_harmonic_across_TFR(tf_representation, **kwargs)[source]

	

	
itsfm.frequency_tracking.get_most_intense_harmonic(time_slice, **kwargs)[source]

	Searches a single column in a 2D array for the first region which
crosses the given percentile threshold.

	
itsfm.frequency_tracking.get_midpoint_of_a_region(region_object)[source]

	

	
itsfm.frequency_tracking.accelaration(X, fs)[source]

	Calculates the absolute accelrateion of a frequency profile in kHz/ms^2

	
itsfm.frequency_tracking.speed(X, fs)[source]

	Calculates the abs speed of the frequency profile in kHz/ms

	
itsfm.frequency_tracking.get_first_region_above_threshold(input_signal, **kwargs)[source]

	Takes in a 1D signal expecting a few peaks in it above the percentil threshold.
If all samples are of the same value, the region is restricted to the first two samples.

	Parameters

	
	input_signal (np.array) –

	percentile (0<float<100, optional) – The percentile threshold used to set the threshold.
Defaults to 99.5

	Returns

	region_location – If there is at least one region above the threshold a tuple with
the output from scipy.ndimage.find_objects. Otherwise None.

	Return type

	tuple or None

	
itsfm.frequency_tracking.frequency_spike_detection(X, fs, **kwargs)[source]

	Detects spikes in the frequency profile by
monitoring the accelration profile through the sound.

	Parameters

	
	X (np.array) – A frequency profile with sample-level estimates of frequency in Hz

	fs (float>0) –

	max_acc (float>0, optional) – Maximum acceleration in the frequency profile.
Defaults to 0.5kHz/ms^2

	Returns

	anomalous – Boolean

	Return type

	np.array

Signal processing

Functions which actually do the calculations on the raw input signal

Module with signal processing functions in it
used by both measure and segment modules.

	
itsfm.signal_processing.dB(X)[source]

	Calculates the 20log of X

	
itsfm.signal_processing.rms(X)[source]

	Root mean square of a signal

	
itsfm.signal_processing.calc_energy(X)[source]

	Sum of all squared samples

	
itsfm.signal_processing.get_power_spectrum(audio, fs=250000.0)[source]

	Calculates an RFFT of the audio.
:param audio:
:type audio: np.array
:param fs: Frequency of sampling in Hz
:type fs: int

	Returns

	
	dB_power_spectrum (np.array) – dB(power_spectrum)

	freqs (np.array) – Centre frequencies of the RFFT.

	
itsfm.signal_processing.calc_sound_borders(audio, percentile=99)[source]

	Gives the start and stop of a sound based on the percentile
cumulative energy values.

	Parameters

	
	audio (np.array) –

	percentile (float, optional) – Value between 100 and 0. The sound border is calcualted
as the border which encapsulates the percentile of energy
Defaults to 99.

	Returns

	start, end

	Return type

	int

	
itsfm.signal_processing.get_robust_peak_frequency(audio, **kwargs)[source]

	Makes a spectrogram from the audio
and calcualtes the peak frequency by averaging
each slice of the spectrogram’s FFT’s.

This ‘smooths’ out the structure of the power
spectrum and allows a single and clear peak
detection.

Thanks to Holger Goerlitz for the suggestion.

	Parameters

	
	audio (np.array) –

	fs (float) – Frequency of sampling in Hz

	seg_length (int, optional) – The size of the FFt window used to calculate the moving FFT slices.
DEfaults to 256

	noverlap (int, optional) – The number of samples overlapping between one FFT slice and the next.
Defaults to seg_length -1

	Returns

	peak_frequency – Frequency with highest power in the audio in Hz.

	Return type

	float

	
itsfm.signal_processing.get_peak_frequency(audio, fs)[source]

	Gives peak frequency and frequency resolution
with which the measurement is made

	Parameters

	
	audio (np.array) –

	fs (float>0) – sampling rate in Hz

	Returns

	peak_freq, freq_resolution – The peak frequency and frequency resolution of this
peak frequency in Hz.

	Return type

	float

	
itsfm.signal_processing.get_frequency_resolution(audio, fs)[source]

	
	Parameters

	
	audio (np.array) –

	fs (float>0) – sampling rate in Hz

	Returns

	resolution – The frequency resolution in Hz.

	Return type

	float

	
itsfm.signal_processing.moving_rms(X, **kwargs)[source]

	Calculates moving rms of a signal with given window size.
Outputs np.array of same size as X. The rms of the
last few samples <= window_size away from the end are assigned
to last full-window rms calculated

	Parameters

	
	X (np.array) – Signal of interest.

	window_size (int, optional) – Defaults to 125 samples.

	Returns

	all_rms – Moving rms of the signal.

	Return type

	np.array

	
itsfm.signal_processing.moving_rms_edge_robust(X, **kwargs)[source]

	Calculates moving rms of a signal with given window size.
Outputs np.array of same size as X. This version is robust
and doesn’t suffer from edge effects as it calculates the
moving rms in both forward and backward directions
and calculates a consensus moving rms profile.

The consensus rms profile is basically achieved by
taking the left half of the forward rms profile
and concatenating it with the right hald of the
backward passed rms profile.

	Parameters

	
	X (np.array) – Signal of interest.

	window_size (int, optional) – Defaults to 125 samples.

	Returns

	all_rms – Moving rms of the signal.

	Return type

	np.array

Notes

moving_rms_edge_robust may not be too accurate when the rms
is expected to vary over short time scales in the centre of
the signal!!

	
itsfm.signal_processing.form_consensus_moving_rms(forward, backward)[source]

	
	Parameters

	
	backward (forward,) – Two arrays of the same dimensions.

	and returns the consensus maximum value at each sample. (Compares) –

	
itsfm.signal_processing.median_filter(input_signal, fs, **kwargs)[source]

	Median filters a signal according to a user-settable
window size.

	Parameters

	
	input_signal (np.array) –

	fs (float) – Sampling rate in Hz.

	medianfilter_size (float, optional) – The window size in seconds. Defaults to 0.001 seconds.

	Returns

	med_filtered – Median filtered version of the input_signal.

	Return type

	np.array

	
itsfm.signal_processing.calc_proper_kernel_size(durn, fs)[source]

	scipy.signal.medfilt requires an odd number of samples as
kernel_size. This function calculates the number of samples
for a given duration which is odd and is close to the
required duration.

	Parameters

	
	durn (float) – Duration in seconds.

	fs (float) – Sampling rate in Hz

	Returns

	samples – Number of odd samples that is equal to or little
less (by one sample) than the input duration.

	Return type

	int

	
itsfm.signal_processing.resize_by_adding_one_sample(input_signal, original_signal, **kwargs)[source]

	Resizes the input_signal to the same size as the original signal by repeating one
sample value. The sample value can either the last or the first sample of the input_signal.

	
itsfm.signal_processing.get_terminal_frequency(audio, fs, **kwargs)[source]

	Gives the -XdB frequency from the peak.

The power spectrum is calculated and smoothened over 3 frequency bands to remove
complex comb-like structures.

Then the lowest frequency below XdB from the peak is returned.

	Parameters

	
	audio (np.array) –

	fs (float>0) – Sampling rate in Hz

	terminal_frequency_threshold (float, optional) – The terminal frequency is calculated based on finding the level of the peak frequency
and choosing the lowest frequency which is -10 dB (20log10) below the peak level.
Defaults to -10 dB

	Returns

	
	terminal_frequency

	threshold

Notes

Careful about setting threshold too low - it might lead to output of terminal
frequencies that are actually in the noise, and not part of the signal itself.

Signal cleaning

Functions which refine, clean and detect outliers.

This module handles the identification and cleaning of noise in signals. A ‘noisy’ signal
is one that has spikes in it or sudden variations in a continuous looking
function. Most of these functions are built to detect and handle sudden
spikes in the frequency profile estimates of a sound.

	
itsfm.signal_cleaning.exterpolate_over_anomalies(X, fs, anomalous, **kwargs)[source]

	Ex(tra)+(in)ter-polates –> Exterpolates over anomalous regions. Anomalous
regions are either ‘edge’ or ‘island’ types. The ‘edge’ anomalies are those which are
at the extreme ends of the signal. The ‘island’ anomalies are regions with
non-anomalous regions on the left and right.

An ‘edge’ anomalous region is handled by running a linear regression on the
neighbouring non-anomalous region, and using the slope to extrapolate over
the edge anomaly.

An ‘island’ anomaly is handled by interpolating between the end values of the
neighbouring non-anomalous regions.

	Parameters

	
	X (np.array) –

	fs (float>0) – Sampling rate in Hz

	anomalous (np.array) – Boolean array of same size as X
True indicates an anomalous sample.

	extrap_window (float>0, optional) – The duration of the extrapolation window in seconds.
Defaults to 0.1ms

	Returns

	smooth_X – Same size as X, with the anomalous regions

	Return type

	np.array

Notes

Only extrapolation by linear regression is supported currently. The extrap_window
parameter is important especially if there is a high rate of frequency modulation
towards the edges of the sound. When there is a high freq. mod. at the edges it
is better to set the extrap_window small. However, setting it too small also
means that the extrapolation may not be as nice anymore.

Example

not up to date!!!

See also

find_closest_normal_region()

	
itsfm.signal_cleaning.fix_island_anomaly(X, fs, anomaly, ref_region_length, **kwargs)[source]

	First tries to interpolate between the edges of the anomaly at hand.
If the interpolation leads to a very drastic slope, a ‘sensible’ extrapolation
is attempted using parts of the non-anomalous signal.

	Parameters

	
	X (np.array) –

	fs (float>0) –

	anomaly (tuple slice) – scipy.ndimage.find_objects output
(slice(start,stop,None),)

	ref_region_length (int>0) – The number of samples to be used as a reference region in
case of extrapolation

	max_fmrate (float>0, optional) – The maximum fm rate to be tolerated while interpolating in kHz/ms
Defaults to 100 kHz/ms.

	Returns

	interpolated – Array of same size as anomaly.

	Return type

	np.array

	
itsfm.signal_cleaning.extrapolate_sensibly(X, fs, anomaly, ref_region_length, **kwargs)[source]

	Function called when fix_island_anomaly detects direct interpolation
will lead to unrealistic slopes. This function is called when there’s
a big difference in values across an anomalous region and an
extrapolation must be performed which will not alter the signal drastically.

	The method tries out the following:
	
	Look left and right of the anomaly to see which region
has higher frequency content.

	Extrapolate in the high-to-low frequency direction.

This basically means that if the local inspection window around anomaly has
a sweep between 20-10kHZ on the left and a 0Hz region on the right - the
anomaly will be extrapolated with the slope from the sweep region because it
has higher frequency content.

Example

>>> freq_profile = [np.zeros(10), np.arange(15,30,5)*1000]
>>> fs = 1.0
>>> x = np.concatenate(freq_profile)[::-1]
>>> anom = (slice(2, 5, None),)
>>>
>>> plt.plot(x, label='noisy frequency profile')
>>> anom_x = np.zeros(x.size, dtype='bool')
>>> anom_x[anom[0]] = True
>>> plt.plot(anom_x*8000, label='identified anomaly')
>>> extrap_out = extrapolate_sensibly(x, fs, anom, 4)
>>> sensibly_extrap = x.copy()
>>> sensibly_extrap[anom_x] = extrap_out
>>> plt.plot(sensibly_extrap, label='extrapolated')
>>> plt.legend()

	
itsfm.signal_cleaning.get_neighbouring_regions(X, target, region_size)[source]

	Takes out samples of region_size on either size of the target.

	Parameters

	
	X (np.array) –

	target (slice) – ndimage.find_objects type slice

	region_size (int >0) –

	Returns

	left_and_right

	Return type

	list

	
itsfm.signal_cleaning.calc_coarse_fmrate(X, fs, **kwargs)[source]

	Calculates slope by subtracting the difference between 1st and
last sample and dividing it by the length of the array.
The output is then converted to units of kHz/ms.

	Parameters

	
	X (np.array) – Frequency profile with values in Hz.

	fs (float>0) –

	
itsfm.signal_cleaning.anomaly_extrapolation(region, X, num_samples, **kwargs)[source]

	Takes X values next to the region and fits a linear regression
into the region. This is only suitable for cases where the
anomalous region is at an ‘edge’ - either one of its samples
is 0 or the last sample of X.

	Parameters

	
	region (object tuple) – A slice type object which is the output from scipy.ndimage.find_objects
This is a slice inside a list/tuple.

	X (np.array) – The original array over which the extrapolation is to be performed

	num_samples (int>0) – The number of samples next to the region to be used to fit the data
for extrapolation into the region.

	Returns

	extrapolated – The values corresponding to the extrapolated region.

	Return type

	np.array

Notes

1. This function covers 90% of cases…if there is an anomaly right next
to an edge anomaly with <num_samples distance – of course things will
go whack.

Warning

A mod on this function also allows extrapolation to occur if there
are < num_samples next to the anomaly - this might make the function
a bit lax in terms of the extrapolations it produces.

	
itsfm.signal_cleaning.anomaly_interpolation(region, X, **kwargs)[source]

	Interpolates X values using values of X adjacent to the
region.

	Parameters

	
	region (object tuple) – Output from scipy.ndimage.find_objects

	X (np.array) –

	Returns

	full_span – The values of interpolated X, of same size as the
region length.

	Return type

	np.array

	
itsfm.signal_cleaning.smooth_over_potholes(X, fs, **kwargs)[source]

	A signal can show drastic changes in its value because of measurement errors.
These drastic variations in signal are called potholes [https://en.wikipedia.org/wiki/Pothole]
(uneven parts of a road). This method tries to ‘level’ out the pothole by re-setting the samples of the
pothole. A linear interpolation is done from the start of a pothole till its end using the closest
non-pothole samples.

A pothole is identified by a region of the signal with drastic changes in slope. A moving window
calculates N slopes between the focal sample and the Nth sample after it to estimate if
the Nth sample could be part of a pothole or not.

	Parameters

	
	X (np.array) –

	fs (float>0) –

	max_stepsize (float>0, optional) – The maximum absolute difference between adjacent samples.
Defaults to 50.

	pothole_inspection_window (float>0, optional) – The length of the moving window that’s used to discover potholes.
See identify_pothole_samples for default value.

	Returns

	
	pothole_covered

	pothole_regions

See also

identify_pothole_samples(), pothole_inspection_window()

	
itsfm.signal_cleaning.identify_pothole_samples(X, fs, **kwargs)[source]

	Moves a sliding window and checks the values of samples in the sliding window.
If the jump of values between samples is not linearly propotional to the
expected max_stepsize, then it is labelled a pothole sample.

A pothole sample is one which represents a sudden jump in the values - indicating
a noisy tracking of the frequency. The jump in values in a non-noisy signal is expected
to be proportional to the distance between the samples.

For instance, if :

>>> a = np.array([10, 2, 6, 10, 12])

If the max step size is 2, then because abs(10-2)>2, it causes a pothole to appear on 2.
There is no pothole label on the 2nd index because abs(10-6) is not >4. Because 10 and 6
are two samples apart, the maximum allowed jump in value is max_stepsize*2, which is 4.

For optimal pothole detection the ‘look-ahead’ span of the pothole_inspection_window
should at least the size of the longest expected potholes. Smaller window sizes
will lead to false negatives.

	Parameters

	
	X (np.array) –

	fs (float>0) –

	max_stepsize (float>0) – The max absolute difference between the values of one sample to the next.

	pothole_inspection_window (float>0, optional) – Defaults to 0.25ms

	Returns

	pothole_candidates – Boolean array with same size as X. Sample that are True represent pothole candidates.

	Return type

	np.array

See also

detect_local_potholes()

	
itsfm.signal_cleaning.onepass_identify_potholes(X, fs, max_stepsize, **kwargs)[source]

	

	
itsfm.signal_cleaning.detect_local_potholes(X, max_step_size)[source]

	accepts a 1D array and checks the absolute difference between
the first sample and all other samples.

The samples with difference greater than the linearly expected increase
from max_step_sizes are labelled candidate potholes.

	Parameters

	
	X (np.array) –

	max_step_size (float>=0) –

	Returns

	candidate_potholes – Boolean array of same size as X

	Return type

	np.array

	
itsfm.signal_cleaning.get_all_spikeish_indices(regions)[source]

	

	
itsfm.signal_cleaning.find_non_forbidden_index(candidate, forbidden_indices, search_direction, X)[source]

	

	
itsfm.signal_cleaning.remove_bursts(X, fs, **kwargs)[source]

	Bursts are brief but large jumps in the signal above zero. Even though they satisfy
most of the other conditions of beginning above the noise floor and of
being above 0 value, they still are too short to be relevant signals.

	Parameters

	
	X (np.array) – The noisy signal to be handled

	fs (float>0) – Sampling rate in Hz.

	min_element_length (float>0, optional) – The minimum length a section of the signal must be to be
kept in seconds. Defaults to 5 inter-sample-intervals.

	Returns

	X_nonspikey – Same size as X, and without very short segments.

	Return type

	np.array

See also

segments_above_min_duration()

Notes

An inter-sample-interval is defined as 1/fs

	
itsfm.signal_cleaning.segments_above_min_duration(satisfies_condition, min_samples)[source]

	Accepts a boolean array and looks for continuous chunks
that are above a minimum length.

	Parameters

	
	satisfies_condition (np.array) – Boolean array where samples with True satisfy a condition.

	min_samples (int >0) – The minimum number of samples a continuous region of True
must be to be kept.

	Returns

	above_min_duration – Same size as satisfies_condition, with only the continuous
chunks that are above min_samples.

	Return type

	np.array

	
itsfm.signal_cleaning.suppress_background_noise(main_signal, input_audio, **kwargs)[source]

	

	
itsfm.signal_cleaning.suppress_frequency_spikes(noisy_profile, input_audio, fs, **kwargs)[source]

	

	
itsfm.signal_cleaning.suppress_to_zero(target_signal, basis_signal, threshold, mode='below')[source]

	Sets the values of the target signal to zero if the
samples in the basis_signal are geq or leq the threshold

	Parameters

	
	basis_signal (target_signal,) –

	threshold (float) –

	mode (['below', 'above'], str) –

	Returns

	cleaned_signal – A copy of the target signal with the values that are below/above the threshold
set to zero

	Return type

	np.array

Example

create a basis signal with a ‘weak’ left half and a ‘loud’ right hald
we want to suppress the we
>>> basis = np.concatenate((np.arange(10), np.arange(100,200)))
>>> target_signal = np.random.normal(0,1,basis.size)
>>> cleaned_target = suppress_to_zero(basis, target_signal, 100, mode=’above’)

	
itsfm.signal_cleaning.clip_tfr(tfr, **kwargs)[source]

	
	Parameters

	
	tfr (np.array) – 2D array with the time-frequency representation of choice
(pwvd, fft etc). The tfr must have real-valued non-negative
values as the clip range is defined in dB.

	tfr_cliprange (float >0, optional) – The maximum dynamic range in dB which will be used to
track the instantaneous frequency. Defaults to
None. See Notes for more details

	Returns

	clipped_tfr – A 2d array of same shape as tfr, with values
clipped between [max, max x 10^(tfr_range/20)]

	Return type

	np.array

Notes

The tfr_cliprange is used to remove the presence of
background noise, faint harmonics or revernberations/echoes
in the audio. This of course all assumes that the main
signal itself is sufficiently intense in the first place.

After the PWVD time-frequency represenation is made,
values below X dB of the maximum value are ‘clipped’ to
the same minimum value. eg. if the pwvd had values of
[0.1, 0.9, 0.3, 1, 0.001, 0.0006] and the tfr_cliprange is
set to 6dB, then the output of the clipping will be
[0.5, 0.9, 0.3, 1, 0.5, 0.5]. This step essentially eliminates
any variation in the array, thus allowing a clear
tracking of the highest component in it.

	
itsfm.signal_cleaning.conditionally_set_to(X, conditional, bool_state)[source]

	Inverts the samples in X where the conditional is True.
:param X: Boolean
:type X: np.array
:param conditional: Boolean
:type conditional: np.array
:param bool_state:
:type bool_state: [True, False]

	Returns

	cond_set_X – conditionally set X

	Return type

	np.array

Notes

this function is useful if you want to ‘suppress’ a few samples
conditionally based ont he values of the same samples
on another array.

Example

>>> x = np.array([True, True, False, False, True])
>>> y = np.array([0,0,10,10,10])
Imagine x is some kind of detection array, while y is the
signal-to-noise ratio at each of the sample points. Of course,
you'd like to discard all the predictions from low SNR measurements.
Let's say you want to keep only those entries in X where y is >1.
>>> x_cond = conditionally_set_to(x, y<10, False)
>>> x_cond

np.array([False, False, False, False, True])

Batch processing

Runs the batch processing option. The main outputs are the call measurements
and the visualisations. (See __main__.py)

$ python -m itsfm -batchfile template_batchfile.csv

Also allows the user to run only one specific row of the whole batch file

$ python -m itsfm -batchfile template_batchfile.csv -one_row 10

The line above loads the 11th row (0-based indexing!!) of the template_batchfile

	
itsfm.batch_processing.run_from_batchfile(batchfile_path, **kwargs)[source]

	
	Parameters

	batchfile_path (str/path) – Path to a batchfile

	Keyword Arguments

	
	one_row (int, optional) – A specific row to be loaded from the whole batchfile
The first row starts with 0. Defaults to None

	_from (int, optional) – Row to start the batchfile processing from.
Defaults to None

	_till (int, optional) – Row to end the batchfile processing.
Defaults to None

	
itsfm.batch_processing.subset_batch_data(batch_data, **kwargs)[source]

	
	Parameters

	batch_data (pd.DataFrame) –

	Keyword Arguments

	
	one_row (int, optional) – Defaults to None

	_from (int, optional) – Defaults to None

	_till (int, optional) – The row number the analysis should run till, including the end point.
Remember the row numbering starts from 0!
Defaults to None

	Returns

	subset_batch_data – Either a copy of batch_data or a part of batch_data

	Return type

	pd.DataFrame

Example

let’s get only one row from the fake batch data file
>>> batch = pd.DataFrame(data={‘a’:range(10), ‘b’:range(10)})
>>> onerow = subset_batch_data(batch, one_row=5)
>>> print(onerow)
get a limited range of the dataframe
>>> part = subset_batch_data(batch, _from=3, _till=8)
>>> print(part)

	
itsfm.batch_processing.measurement_file_action(**kwargs)[source]

	Either lets the measurement file remain, or deletes it if present

	Keyword Arguments

	del_measurement (boolean) – True means all files starting with ‘measurement’ are deleted

	
itsfm.batch_processing.onerow_used_properly(**kwargs)[source]

	Checks that the -one_row argument is not
used in conjunction with -from or -till

	
itsfm.batch_processing.save_measurements_to_file(output_filepath, audio_file_name, previous_rows, measurements)[source]

	Continously saves a row to a csv file and updates it.

Thanks to tmss @ https://stackoverflow.com/a/46775108

	Parameters

	
	output_filepath (str/path) –

	audio_file_name (str.) –

	previous_rows (pd.DataFrame) – All the previous measurements.
Can also just have a single row.

	measurements (pd.DataFrame) – Current measurements to be incorporated

	Returns

	

	Return type

	None, previous rows

Notes

Main side effect is to write an updated version of the
output file.

	
itsfm.batch_processing.load_raw_audio(kwargs)[source]

	Takes a dictioanry input.
All the parameter names need to be keys in the
input dictionary.

	Parameters

	
	audio_path (str/path) – Path to audio file

	channel (int, optional) – Channel number to be loaded - starting from 1!
Defaults to 1.

	start,stop (float, optional) –

	Returns

	raw_audio – The audio corresponding to the start and stop times
and the required channel.

	Return type

	np.array

	
itsfm.batch_processing.to_separate_from_background(arguments)[source]

	

	
itsfm.batch_processing.to_list_w_funcs(X, source_module=<module 'itsfm.measurement_functions' from '/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-packages/itsfm-0.0.1-py3.7.egg/itsfm/measurement_functions.py'>, **kwargs)[source]

	
	Parameters

	
	X (str) – String defining a list with commas as separators
eg. “[func_name1, func_name2] “

	source_module (str, optional) – Defaults to itsfm.measurement_functions

	signs_to_remove (list w str) – Any special signs to remove from each str
in the list of comma separated strings.
Defaults to None.

	Returns

	list with functions belonging to the source module

	Return type

	list_w_funcs

Example

>>> x = "[measure_rms, measure_peak_amplitude]"
>>> list_w_funcs = to_list_w_funcs(x)

	
itsfm.batch_processing.remove_punctuations(full_str, **kwargs)[source]

	Removes spaces,], and [in a string.
Additional signs can be removed too

	Parameters

	
	full_str (str) – A long string with multiple punctuation marks
to be removed (space, comma,])

	signs_to_remove (list w str', optional) – Additional specific punctuation/s to be removed
Defaults to None

	Returns

	clean_str

	Return type

	str

	
itsfm.batch_processing.parse_batchfile_row(one_row)[source]

	checks for all user-given arguments
and removes any columns with DEFAULT in them.

	Parameters

	one_row (pd.DataFrame) – A single row with multiple column names, corresponding to
compulsory required arguments and the optional
ones

	Returns

	arguments – Simple dictioanry with one entry for each key.

	Return type

	dictionary

	
itsfm.batch_processing.make_to_oned_dataframe(oned_series)[source]

	
	Parameters

	oned_series (pd.Series) – One dimensional pd.Series with columns and values

	Returns

	

	Return type

	oned_df

	
exception itsfm.batch_processing.ImproperArguments[source]

	

 Python Module Index

 i

 		 	

 		
 i	

 	[image: -]
 	
 itsfm	

 	
 	
 itsfm.batch_processing	

 	
 	
 itsfm.frequency_tracking	

 	
 	
 itsfm.measure	

 	
 	
 itsfm.measurement_functions	

 	
 	
 itsfm.segment	

 	
 	
 itsfm.signal_cleaning	

 	
 	
 itsfm.signal_processing	

 	
 	
 itsfm.user_interface	

 	
 	
 itsfm.view	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | V
 | W

A

 	
 	accelaration() (in module itsfm.frequency_tracking)

 	anomaly_extrapolation() (in module itsfm.signal_cleaning)

 	
 	anomaly_interpolation() (in module itsfm.signal_cleaning)

 	assign_cffm_regionids() (in module itsfm.measure)

C

 	
 	calc_coarse_fmrate() (in module itsfm.signal_cleaning)

 	calc_energy() (in module itsfm.signal_processing)

 	calc_proper_kernel_size() (in module itsfm.segment)

 	(in module itsfm.signal_processing)

 	calc_sound_borders() (in module itsfm.signal_processing)

 	calculate_fm_rate() (in module itsfm.segment)

 	CFIdentificationError

 	
 	check_call_background_segmentation() (in module itsfm.view)

 	check_relevant_duration() (in module itsfm.segment)

 	check_segment_cf_and_fm() (in module itsfm.segment)

 	clean_up_spikes() (in module itsfm.frequency_tracking)

 	clip_tfr() (in module itsfm.signal_cleaning)

 	combine_and_order_regions() (in module itsfm.measure)

 	common_measurements() (in module itsfm.measure)

 	conditionally_set_to() (in module itsfm.signal_cleaning)

D

 	
 	dB() (in module itsfm.signal_processing)

 	
 	detect_local_potholes() (in module itsfm.signal_cleaning)

 	duration() (in module itsfm.measurement_functions)

E

 	
 	exterpolate_over_anomalies() (in module itsfm.signal_cleaning)

 	
 	extrapolate_sensibly() (in module itsfm.signal_cleaning)

F

 	
 	find_geq_signallevel() (in module itsfm.frequency_tracking)

 	find_lowest_intense_harmonic_across_TFR() (in module itsfm.frequency_tracking)

 	find_non_forbidden_index() (in module itsfm.signal_cleaning)

 	find_regions() (in module itsfm.measure)

 	
 	fit_polynomial_on_downsampled_version() (in module itsfm.segment)

 	fix_island_anomaly() (in module itsfm.signal_cleaning)

 	form_consensus_moving_rms() (in module itsfm.signal_processing)

 	fraction_duration() (in module itsfm.segment)

 	frequency_spike_detection() (in module itsfm.frequency_tracking)

G

 	
 	generate_pwvd_frequency_profile() (in module itsfm.frequency_tracking)

 	get_all_spikeish_indices() (in module itsfm.signal_cleaning)

 	get_cf_region() (in module itsfm.segment)

 	get_fftsize() (in module itsfm.view)

 	get_first_region_above_threshold() (in module itsfm.frequency_tracking)

 	get_fm_regions() (in module itsfm.segment)

 	get_frequency_resolution() (in module itsfm.signal_processing)

 	get_midpoint_of_a_region() (in module itsfm.frequency_tracking)

 	
 	get_most_intense_harmonic() (in module itsfm.frequency_tracking)

 	get_neighbouring_regions() (in module itsfm.signal_cleaning)

 	get_peak_frequency() (in module itsfm.signal_processing)

 	get_power_spectrum() (in module itsfm.signal_processing)

 	get_pwvd_frequency_profile() (in module itsfm.frequency_tracking)

 	get_robust_peak_frequency() (in module itsfm.signal_processing)

 	get_terminal_frequency() (in module itsfm.signal_processing)

 	get_thresholds_re_max() (in module itsfm.segment)

I

 	
 	identify_cf_ish_regions() (in module itsfm.segment)

 	identify_maximum_contiguous_regions() (in module itsfm.segment)

 	identify_pothole_samples() (in module itsfm.signal_cleaning)

 	identify_valid_regions() (in module itsfm.segment)

 	ImproperArguments

 	IncorrectThreshold

 	itsfm.batch_processing (module)

 	itsfm.frequency_tracking (module)

 	
 	itsfm.measure (module)

 	itsfm.measurement_functions (module)

 	itsfm.segment (module)

 	itsfm.signal_cleaning (module)

 	itsfm.signal_processing (module)

 	itsfm.user_interface (module)

 	itsfm.view (module)

 	itsFMInspector (class in itsfm.view)

L

 	
 	load_raw_audio() (in module itsfm.batch_processing)

 	
 	low_and_highpass_around_threshold() (in module itsfm.segment)

M

 	
 	make_overview_figure() (in module itsfm.view)

 	make_specgram() (in module itsfm.view)

 	make_to_oned_dataframe() (in module itsfm.batch_processing)

 	measure_hbc_call() (in module itsfm.measure)

 	measure_peak_amplitude() (in module itsfm.measurement_functions)

 	measure_peak_frequency() (in module itsfm.measurement_functions)

 	
 	measure_rms() (in module itsfm.measurement_functions)

 	measure_terminal_frequency() (in module itsfm.measurement_functions)

 	measurement_file_action() (in module itsfm.batch_processing)

 	median_filter() (in module itsfm.segment)

 	(in module itsfm.signal_processing)

 	moving_rms() (in module itsfm.signal_processing)

 	moving_rms_edge_robust() (in module itsfm.signal_processing)

O

 	
 	onepass_identify_potholes() (in module itsfm.signal_cleaning)

 	
 	onerow_used_properly() (in module itsfm.batch_processing)

P

 	
 	parse_batchfile_row() (in module itsfm.batch_processing)

 	parse_cffm_segments() (in module itsfm.measure)

 	perform_segment_measurements() (in module itsfm.measure)

 	plot_accelaration_profile() (in module itsfm.view)

 	
 	plot_dbrms_cffmprofiles() (in module itsfm.view)

 	plot_movingdbrms() (in module itsfm.view)

 	pre_process_for_segmentation() (in module itsfm.segment)

 	pwvd_transform() (in module itsfm.frequency_tracking)

R

 	
 	refine_candidate_regions() (in module itsfm.segment)

 	refine_cf_fm_candidates() (in module itsfm.segment)

 	remove_bursts() (in module itsfm.signal_cleaning)

 	remove_punctuations() (in module itsfm.batch_processing)

 	
 	resize_by_adding_one_sample() (in module itsfm.segment)

 	(in module itsfm.signal_processing)

 	rms() (in module itsfm.signal_processing)

 	run_from_batchfile() (in module itsfm.batch_processing)

S

 	
 	save_measurements_to_file() (in module itsfm.batch_processing)

 	save_overview_graphs() (in module itsfm.user_interface)

 	segment_and_measure_call() (in module itsfm.user_interface)

 	segment_by_peak_percentage() (in module itsfm.segment)

 	segment_by_pwvd() (in module itsfm.segment)

 	segment_call_from_background() (in module itsfm.segment)

 	segment_call_into_cf_fm() (in module itsfm.segment)

 	segment_cf_regions() (in module itsfm.segment)

 	segments_above_min_duration() (in module itsfm.signal_cleaning)

 	
 	show_all_call_parts() (in module itsfm.view)

 	smooth_over_potholes() (in module itsfm.signal_cleaning)

 	speed() (in module itsfm.frequency_tracking)

 	start() (in module itsfm.measurement_functions)

 	stop() (in module itsfm.measurement_functions)

 	subset_batch_data() (in module itsfm.batch_processing)

 	suppress_background_noise() (in module itsfm.signal_cleaning)

 	suppress_frequency_spikes() (in module itsfm.signal_cleaning)

 	suppress_to_zero() (in module itsfm.signal_cleaning)

T

 	
 	to_list_w_funcs() (in module itsfm.batch_processing)

 	
 	to_separate_from_background() (in module itsfm.batch_processing)

 	track_peak_frequency_over_time() (in module itsfm.frequency_tracking)

V

 	
 	visualise_accelaration() (itsfm.view.itsFMInspector method)

 	visualise_cffm_segmentation() (itsfm.view.itsFMInspector method)

 	visualise_fmrate() (itsfm.view.itsFMInspector method)

 	visualise_fmrate_profile() (in module itsfm.view)

 	
 	visualise_frequency_profiles() (itsfm.view.itsFMInspector method)

 	visualise_geq_signallevel() (itsfm.view.itsFMInspector method)

 	visualise_pkpctage_profiles() (itsfm.view.itsFMInspector method)

 	visualise_sound() (in module itsfm.view)

W

 	
 	whole_audio_fmrate() (in module itsfm.segment)

 All modules for which code is available

	itsfm.batch_processing

	itsfm.frequency_tracking

	itsfm.measure

	itsfm.measurement_functions

	itsfm.segment

	itsfm.signal_cleaning

	itsfm.signal_processing

	itsfm.user_interface

	itsfm.view

 Source code for itsfm.batch_processing

-*- coding: utf-8 -*-
"""Runs the batch processing option. The main outputs are the call measurements
and the visualisations. (See __main__.py)

.. code-block:: bash

 $ python -m itsfm -batchfile template_batchfile.csv

Also allows the user to run only one specific row of the whole batch file

.. code-block:: bash

 $ python -m itsfm -batchfile template_batchfile.csv -one_row 10

The line above loads the 11th row (0-based indexing!!) of the template_batchfile

"""
from copy import copy
from glob import glob
import os
import pdb
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
try:
	import soundfile as sf
except:
	print('Cannot import SoundFile!!') # a hack for rtd build to pass.
from tqdm import tqdm
import itsfm
from itsfm.user_interface import segment_and_measure_call
from itsfm.user_interface import save_overview_graphs
from itsfm.view import itsFMInspector
from itsfm.sanity_checks import check_preexisting_file, make_sure_its_positive

[docs]def run_from_batchfile(batchfile_path, **kwargs):
 '''
 Parameters

 batchfile_path : str/path
 Path to a batchfile

 Keyword Arguments

 one_row : int, optional
 A specific row to be loaded from the whole batchfile
 The first row starts with 0. Defaults to None
 _from : int, optional
 Row to start the batchfile processing from.
 Defaults to None
 _till : int, optional
 Row to end the batchfile processing.
 Defaults to None

 '''
 measurement_file_action(**kwargs)
 batch_data = load_batchfile(batchfile_path)
 final_batch_data = subset_batch_data(batch_data, **kwargs)

 batchfile_name = get_only_filename(batchfile_path)

 analysis_name = '_'.join(['measurements',batchfile_name])
 measurements_output_file = analysis_name + '.csv'

 all_measurements = []

 for row_number, one_batchfile_row in tqdm(final_batch_data.iterrows(),
 total=final_batch_data.shape[0]):

 input_arguments = parse_batchfile_row(one_batchfile_row)
 row_skip = input_arguments.get('skip', False)
 if not row_skip:
 main_audio, fs = load_raw_audio(input_arguments)

 audio_file_name = get_only_filename(input_arguments['audio_path'])
 print('Processing '+audio_file_name+' ...')
 segment_and_measure = segment_and_measure_call(main_audio,
 fs,
 **input_arguments)
 out_inspect = itsFMInspector(segment_and_measure, main_audio, fs,
 **input_arguments)
 (cf, fm, info), call_parts, measurements = segment_and_measure

 # start making diagnostic plots
 one, _ = out_inspect.visualise_geq_signallevel()
 two, _ = out_inspect.visualise_cffm_segmentation()
 three,_ = out_inspect.visualise_frequency_profiles()
 four, _, _ = out_inspect.visualise_fmrate()
 five, _, _ = out_inspect.visualise_accelaration()

 subplots_to_graph = [one, two, three, four, five]

 save_overview_graphs(subplots_to_graph, batchfile_name, audio_file_name,
 row_number, **input_arguments)
 measurements['audio_file'] = audio_file_name
 all_measurements = save_measurements_to_file(measurements_output_file,
 audio_file_name,all_measurements,
 measurements)
 plt.close('all')

[docs]def subset_batch_data(batch_data, **kwargs):
 '''
 Parameters

 batch_data : pd.DataFrame

 Keyword Arguments

 one_row : int, optional
 Defaults to None
 _from : int, optional
 Defaults to None
 _till : int, optional
 The row number the analysis should run till, including the end point.
 Remember the row numbering starts from 0!
 Defaults to None

 Returns

 subset_batch_data : pd.DataFrame
 Either a copy of batch_data or a part of batch_data

 Example

 # let's get only one row from the fake batch data file
 >>> batch = pd.DataFrame(data={'a':range(10), 'b':range(10)})
 >>> onerow = subset_batch_data(batch, one_row=5)
 >>> print(onerow)
 # get a limited range of the dataframe
 >>> part = subset_batch_data(batch, _from=3, _till=8)
 >>> print(part)
 '''
 # check that one_row is not being used in conjunction with
 # from or till

 if kwargs.get('one_row') is not None:
 onerow_used_properly(**kwargs)
 one_row = kwargs.get('one_row')
 try:
 subset_batch_data = make_to_oned_dataframe(batch_data.loc[one_row])
 return subset_batch_data
 except:
 print(f"Unable to subset batch file with row number: {one_row}")

 if kwargs.get('_from') is None:
 start_row = 0
 else:
 start_row = kwargs.get('_from')

 if kwargs.get('_till') is None:
 end_row = batch_data.shape[0]
 else:
 end_row = kwargs.get('_till')

 if end_row < start_row:
 raise ValueError('end row : {end_row} is before start row: {start_row}')
 elif np.logical_or(end_row <0, start_row<0):
 raise ValueError('One of either end row : {end_row} or start row: {start_row} are <0!')

 subset_batch_data = batch_data.loc[start_row:end_row,:]
 return subset_batch_data

[docs]def measurement_file_action(**kwargs):
 '''
 Either lets the measurement file remain, or deletes it if present

 Keyword Arguments

 del_measurement : boolean
 True means all files starting with 'measurement' are deleted

 '''
 if kwargs.get('del_measurement'):
 # check if there is a measurement file already in the folder
 measurement_file_match = glob('measurement*')
 if len(measurement_file_match) > 0:
 [os.remove(each) for each in measurement_file_match]

[docs]def onerow_used_properly(**kwargs):
 '''Checks that the -one_row argument is not
 used in conjunction with -from or -till
 '''
 if kwargs.get('one_row') is not None:
 from_till = [kwargs.get('_from', 0), kwargs.get('_till', 0)]
 if any(from_till):
 raise ImproperArguments('one_row is being used with either -from or -till. This is not allowed!')

[docs]def save_measurements_to_file(output_filepath,
 audio_file_name,
 previous_rows, measurements):
 '''
 Continously saves a row to a csv file and updates it.

 Thanks to tmss @ https://stackoverflow.com/a/46775108

 Parameters

 output_filepath :str/path
 audio_file_name : str.
 previous_rows : pd.DataFrame
 All the previous measurements.
 Can also just have a single row.
 measurements : pd.DataFrame
 Current measurements to be incorporated

 Returns

 None, previous rows

 Notes

 Main side effect is to write an updated version of the
 output file.
 '''
 #raise NotImplementedError('Long format measurement saving not implemented!!')
 current_measures = measurements.copy()
 if len(previous_rows)==0:
 previous_rows = current_measures.copy()
 previous_rows.sort_index(axis=1, inplace=True)
 check_preexisting_file(output_filepath)
 previous_rows.to_csv(output_filepath,
 mode='a', index=True, sep=',', encoding='utf-8')
 else:
 num_new_rows = current_measures.shape[0]
 current_last_row = previous_rows.shape[0]
 previous_rows = pd.concat((previous_rows, current_measures))

 new_row, new_row_end = current_last_row, current_last_row+num_new_rows
 previous_rows.iloc[new_row: new_row_end,:].to_csv(output_filepath,
 mode='a', index=True,
 sep=',', encoding='utf-8',
 header=False)
 return previous_rows

def load_batchfile(batchfile):
 try:
 return pd.read_csv(batchfile)
 except:
 error_msg = 'Could not read batchfile:'+ batchfile+'. Please check file path again'
 raise ValueError(error_msg)

[docs]def load_raw_audio(kwargs):
 '''Takes a dictioanry input.
 All the parameter names need to be keys in the
 input dictionary.

 Parameters

 audio_path : str/path
 Path to audio file
 channel : int, optional
 Channel number to be loaded - starting from 1!
 Defaults to 1.
 start,stop : float, optional

 Returns

 raw_audio : np.array
 The audio corresponding to the start and stop times
 and the required channel.
 '''
 audio_path = kwargs.get('audio_path', None)
 try:
 fs = sf.info(audio_path).samplerate
 except:
 errormsg = 'Could not access: '+audio_path
 raise ValueError(errormsg)
 channel_to_load = int(kwargs.get('channel', 1)) -1

 start_time, stop_time = kwargs.get('start', None), kwargs.get('stop', None)
 start_sample = convert_time_to_samples(start_time, fs)
 stop_sample = convert_time_to_samples(stop_time, fs)

 audio, fs = sf.read(audio_path, start=start_sample, stop=stop_sample)
 num_channels = get_number_channels(audio)

 if num_channels>1:
 return audio[:, channel_to_load], fs
 else:
 return audio, fs

def get_only_filename(file_path):
 folder, file_w_extension = os.path.split(file_path)
 filename, extension = os.path.splitext(file_w_extension)
 return filename

[docs]def to_separate_from_background(arguments):
 '''
 '''
 try:
 user_input = arguments.get('segment_call_background', True)
 boolean_user_input = get_boolean_from_string[user_input]
 return boolean_user_input
 except:
 error = 'user input '+user_input+' for segment_call_background is not True or False or DEFAULT - please check'
 raise ValueError(error)

get_boolean_from_string = {'True':True,
 'False':False,
 True:True,
 False:False}

def get_number_channels(audio):
 try:
 rows,cols = audio.shape
 return cols
 except:
 return 1

def convert_time_to_samples(time, fs):

 if not(time is None):
 samples = int(time*fs)
 else:
 samples = None
 return samples

to_string = lambda X: str(X)
to_float = lambda X: float(X)
to_integer = lambda X: int(X)
to_bool = lambda X: {'True':True, 'False':False}[X]

[docs]def to_list_w_funcs(X, source_module=itsfm.measurement_functions,
 **kwargs):
 """

 Parameters

 X : str
 String defining a list with commas as separators
 eg. "[func_name1, func_name2] "
 source_module : str, optional
 Defaults to itsfm.measurement_functions
 signs_to_remove : list w str
 Any special signs to remove from each str
 in the list of comma separated strings.
 Defaults to None.
 Returns

 list_w_funcs
 list with functions belonging to the source module

 Example

 >>> x = "[measure_rms, measure_peak_amplitude]"
 >>> list_w_funcs = to_list_w_funcs(x)

 """
 individual_strings = X.split(',')
 # remove unnecessary punctuations

 list_w_funcs = []
 for each in individual_strings:
 cleaned = remove_punctuations(each, **kwargs)
 try:
 list_w_funcs.append(getattr(source_module, cleaned))
 except:
 raise ValueError(f"Unable to find function {cleaned} in module {source_module}")
 return list_w_funcs

[docs]def remove_punctuations(full_str, **kwargs):
 """
 Removes spaces,], and [in a string.
 Additional signs can be removed too

 Parameters

 full_str : str
 A long string with multiple punctuation marks
 to be removed (space, comma,])
 signs_to_remove : list w str', optional
 Additional specific punctuation/s to be removed
 Defaults to None
 Returns

 clean_str : str
 """
 clean_str = copy(full_str)
 # remove spaces
 clean_str = clean_str.replace(" ", "")
 # remove]
 clean_str = clean_str.replace("]", "")
 # remove [
 clean_str = clean_str.replace("[", "")

 if kwargs.get('signs_to_remove') is not None:
 for each in kwargs['signs_to_remove']:
 clean_str = clean_str.replace(each, "")

 return clean_str

dictionary which converts the entries in a column to
their appropriate types
convert_column_to_proper_type = {
 'audio_path': to_string,
 'start': to_float,
 'stop' : to_float,
 'channel' : to_integer,
 'peak_percentage' : to_float,
 'window_size' : to_integer,
 'signal_level' : to_float,
 'terminal_frequency_threshold' : to_float,
 'fft_size' : to_integer,
 'segment_method' : to_string,
 'tfr_cliprange' : to_float,
 'pwvd_window' : to_integer,
 'pwvd_filter' : to_bool,
 'measurements' : to_list_w_funcs,
 'sample_every' : to_float,
 'skip': to_bool
 }

[docs]def parse_batchfile_row(one_row):
 '''checks for all user-given arguments
 and removes any columns with DEFAULT in them.

 Parameters

 one_row : pd.DataFrame
 A single row with multiple column names, corresponding to
 compulsory required arguments and the optional
 ones

 Returns

 arguments : dictionary
 Simple dictioanry with one entry for each key.
 '''
 arguments = one_row.to_dict()

 # remove all keys with 'NONE' in them
 columns_to_remove = []
 for column, value in arguments.items():
 if value=='DEFAULT':
 columns_to_remove.append(column)
 else:
 # convert to relevant type:
 try:
 arguments[column] = convert_column_to_proper_type[column](value)
 except:
 pass

 if len(columns_to_remove)>0:
 for each in columns_to_remove:
 try:
 del arguments[each]
 except KeyError:
 pass

 return arguments

[docs]def make_to_oned_dataframe(oned_series):
 """

 Parameters

 oned_series : pd.Series
 One dimensional pd.Series with columns and values

 Returns

 oned_df

 """
 columns = oned_series.index.to_list()
 values = oned_series.values

 entries = data={key:value for key, value in zip(columns, values)}
 oned_df = pd.DataFrame(data=entries, index=[0])
 return oned_df

[docs]class ImproperArguments(ValueError):
 pass

 Source code for itsfm.frequency_tracking

-*- coding: utf-8 -*-
"""
Even though the spectrogram is one of the most dominant time-frequency
representation, there are whole class of alternate representations. This
module has the code which tracks the dominant frequency in a sound using
non-spectrogram methods.

The Pseudo Wigner Ville Distribution
....................................
The Pseudo Wigner Ville Distribution is an accurate but not so well known
method to represent a signal on the time-frequency axis[1]. This time-frequency
representation is implemented in the `get_pwvd_frequency_profile`.

References

[1] Cohen, L. (1995). Time-frequency analysis (Vol. 778). Prentice hall.

"""
import numpy as np
import scipy.ndimage as ndimage
import scipy.signal as signal
import skimage.filters as filters
from tftb.processing import PseudoWignerVilleDistribution
import itsfm.signal_cleaning
from itsfm.signal_cleaning import suppress_background_noise, remove_bursts, smooth_over_potholes
from itsfm.signal_cleaning import exterpolate_over_anomalies
from itsfm.signal_cleaning import clip_tfr, smooth_over_potholes
from itsfm.signal_processing import moving_rms_edge_robust, dB

[docs]def get_pwvd_frequency_profile(input_signal, fs, **kwargs):
 '''Generates a clean frequency profile through the PWVD.
 The order of frequency profile processing is as follows:

 #. Split input signal into regions that are
 greater or equal to the `signal_level`. This
 speeds up the whole process of pwvd tracking
 multiple sounds, and ignores the fainter samples.

 #. Generate PWVD for each above-noise region.

 #. Set regions below background noise to 0Hz

 #. Remove sudden spikes and set these regions to values
 decided by interpolation between adjacent non-spike regions.

 Parameters

 input_signal : np.array
 fs : float

 Notes

 The fact that each signal part is split into independent
 above-background segments and then frequency tracked can
 have implications for frequency resolution. Short sounds
 may end up with frequency profiles that have a lower
 resolution than longer sounds. Each sound is handled separately
 primarily for memory and speed considerations.

 Example

 Create two chirps in the middle of a somewhat silent recording

 >>> import matplotlib.pyplot as plt
 >>> from itsfm.simulate_calls import make_fm_chirp
 >>> from itsfm.view_horseshoebat_call import plot_movingdbrms
 >>> from itsfm.view_horseshoebat_call import visualise_call, make_x_time
 >>> fs = 44100
 >>> start_f, end_f = 1000, 10000
 >>> chirp = make_fm_chirp(start_f, end_f, 0.01, fs)
 >>> rec = np.random.normal(0,10**(-50/20), 22100)
 >>> chirp1_start, chirp1_end = 10000, 10000 + chirp.size
 >>> chirp2_start, chirp2_end = np.array([chirp1_start, chirp1_end])+int(fs*0.05)
 >>> rec[chirp_start:chirp_end] += chirp
 >>> rec[chirp2_start:chirp2_end] += chirp
 >>> rec /= np.max(abs(rec))
 >>> actual_fp = np.zeros(rec.size)
 >>> actual_fp[chirp1_start:chirp1_end] = np.linspace(start_f, end_f, chirp.size)
 >>> actual_fp[chirp2_start:chirp2_end] = np.linspace(start_f, end_f, chirp.size)

 Check out the dB rms profile of the recording to figure out where the
 noise floor is

 >>> plot_movingdbrms(rec, fs)

 >>> clean_fp, info = get_pwvd_frequency_profile(rec, fs,
 signal_level=-9,
 extrap_window=10**-3,
 max_acc = 0.6)
 >>> plt.plot(clean_fp, label='obtained')
 >>> plt.plot(actual_fp, label='actual')
 >>> plt.legend()

 Now, let's overlay the obtained frequency profile onto a spectrogram to
 check once more how well the dominant frequency has been tracked.

 >>> w,s = visualise_call(rec, fs, fft_size=128)
 >>> s.plot(make_x_time(clean_fp, fs), clean_fp)

 See Also

 itsfm.signal_cleaning.smooth_over_potholes
 find_above_noise_regions
 '''
 info = {}
 above_noise_regions, moving_dbrms = find_geq_signallevel(input_signal, fs, **kwargs)

 full_fp = np.zeros(input_signal.size)
 full_raw_fp = np.zeros(input_signal.size)
 acc_profile = np.zeros(input_signal.size)
 spikey_regions = np.zeros(input_signal.size)
 #print('generating PWVD frequency profile....')
 for region in above_noise_regions:
 raw_fp, frequency_index = generate_pwvd_frequency_profile(input_signal[region],
 fs, **kwargs)
 weird_parts, accelaration_profile = frequency_spike_detection(raw_fp, fs, **kwargs)
 cleaned_fp = exterpolate_over_anomalies(raw_fp, fs, weird_parts, **kwargs)
 full_raw_fp[region] = raw_fp
 cleaned_fp = exterpolate_over_anomalies(raw_fp, fs, weird_parts,
 **kwargs)
 acc_profile[region] = accelaration_profile

 full_fp[region] = cleaned_fp
 spikey_regions[region[0]][weird_parts] = 1

 info['moving_dbrms'] = moving_dbrms
 info['geq_signal_level'] = above_noise_regions
 info['raw_fp'] = full_raw_fp
 info['acc_profile'] = acc_profile
 info['spikey_regions'] = spikey_regions

 return full_fp, info

[docs]def find_geq_signallevel(X, fs, **kwargs):
 '''
 Find regions greater or equal to signal level
 '''
 signal_level = kwargs.get('signal_level', -20)
 winsize = kwargs.get('window_size', int(fs*0.002))
 rec_level = dB(moving_rms_edge_robust(X, window_size=winsize))

 ids_above_noise, num_regions = ndimage.label(rec_level>signal_level)
 if num_regions <1:
 raise ValueError('No regions above signal level found!')

 return ndimage.find_objects(ids_above_noise), rec_level

[docs]def clean_up_spikes(whole_freqeuncy_profile, fs, **kwargs):
 '''Applies smooth_over_potholes on each non-zero frequency segment
 in the profile.

 Parameters

 Returns

 See Also

 smooth_over_potholes

 Example

 Let's create a case with an FM and CF tone
 >>> from itsfm.simulate_calls import make_tone, make_fm_chirp, silence
 >>> fs = 22100
 >>> tone = make_tone(5000, 0.01, fs)
 >>> sweep = make_fm_chirp(1000, 6000, 0.005, fs)
 >>> gap = silence(0.005, fs)
 >>> full_call = np.concatenate((tone, gap, sweep))

 The raw frequency profile, with very noisy frequency estimates needs
 to be further cleaned

 >>> raw_fp, frequency_index = generate_pwvd_frequency_profile(full_call,
 fs)
 >>> noise_supp_fp = noise_supp_fp = suppress_background_noise(raw_fp,
 full_call,
 window_size=25,
 background_noise=-30)

 Even after the noisy parts have been suppressed, there're still some
 spikes caused by the

 >>>

 '''

 nonzero_freqs, num_regions = ndimage.label(whole_freqeuncy_profile>0)
 segment_locations = ndimage.find_objects(nonzero_freqs)

 if len(segments) <1 :
 raise ValueError('No non-zero frequency sounds found..!')

 de_spiked = np.zeros(whole_freqeuncy_profile.size)

 for segment in segment_locations:
 smoothed, _ = smooth_over_potholes(whole_freqeuncy_profile[segment],
 fs, **kwargs)
 de_spiked[segment] = smoothed
 return de_spiked

[docs]def generate_pwvd_frequency_profile(input_signal, fs, **kwargs):
 '''Generates the raw instantaneous frequency estimate at each sample.
 using the Pseudo Wigner Ville Distribution

 Parameters

 input_signal : np.array
 fs : float
 pwvd_filter : Boolean, optional
 Whether to perform median filtering with a 2D kernel.
 Defaults to False
 pwvd_filter_size : int, optional
 The size of the square 2D kernel used to median filter the
 initial PWVD time-frequency representation.
 pwvd_window : float>0, optional
 The duration of the window used in the PWVD. See pwvd_transform
 for the default value.
 tfr_cliprange: float >0, optional
 The clip range in dB.
 Clips all values in the abs(pwvd) time-frequency
 representation to between max and max*10*(-tfr_cliprange/20.0).
 Defaults to None, which does not alter the pwvd transform in anyway.

 Returns

 raw_frequency_profile, frequency_indx : np.array
 Both outputs are the same size as input_signal.
 raw_frequency_profile is the inst. frequency in Hz.
 frequency_indx is the row index of the PWVD array.

 See Also

 pwvd_transform
 track_peak_frequency_over_time
 itsfm.signal_cleaning.clip_tfr

 '''
 pwvd_filter = kwargs.get('pwvd_filter', False)
 pwvd_filter_size = kwargs.get('pwvd_filter_size', 10)
 filter_dims = (pwvd_filter_size, pwvd_filter_size)

 time_freq_rep = np.abs(pwvd_transform(input_signal, fs,
 **kwargs))
 clipped_tfr = clip_tfr(time_freq_rep, **kwargs)

 if pwvd_filter:
 print('....A 2D median filter kernel is being applied to the PWVD...')
 median_filtered_tf = filters.median_filter(clipped_tfr, size=filter_dims)
 print('..done with PWVD filtering..')
 raw_frequency_profile, frequency_indx = track_peak_frequency_over_time(input_signal, fs,
 median_filtered_tf,
 **kwargs)
 else:
 raw_frequency_profile, frequency_indx = track_peak_frequency_over_time(input_signal, fs,
 clipped_tfr,
 **kwargs)
 return raw_frequency_profile, frequency_indx

[docs]def pwvd_transform(input_signal, fs, **kwargs):
 '''Converts the input signal into an analytical signal and then generates
 the PWVD of the analytical signal.

 Uses the PseudoWignerVilleDistribution class from the tftb package [1].

 Parameters

 input_signal : np.array
 fs : float

 pwvd_window_type : np.array, optional
 The window to be used for the pseudo wigner-ville distribution.
 If not given, then a hanning signal is used of the default length.
 The window given here supercedes the 'window_length' argument below.

 pwvd_window : float>0, optional
 The duration of the window used in the PWVD. Defaults to 0.001s

 Returns

 time_frequency_output : np.array
 Two dimensional array with dimensions of NsamplesxNsamples, where
 Nsamples is the number of samples in input_signal.

 References

 [1] Jaidev Deshpande, tftb 0.1.1 ,Python module for time-frequency analysis,
 https://pypi.org/project/tftb/
 '''
 window_length = kwargs.get('pwvd_window', 0.001)
 window = kwargs.get('pwvd_window_type', signal.hanning(int(fs*window_length)))
 analytical = signal.hilbert(input_signal)
 p = PseudoWignerVilleDistribution(analytical, fwindow=window)
 pwvd_output = p.run();
 time_frequency_output = pwvd_output[0]
 return time_frequency_output

[docs]def track_peak_frequency_over_time(input_signal, fs, time_freq_rep, **kwargs):
 '''Tracks the lowest possible peak frequency. This ensures that the
 lowest harmonic is being tracked in a multiharmonic signal with similar
 levels across the harmonics.

 EAch 'column' of the 2D PWVD is inspected for the lowest peak that crosses
 a percentile threshold, and this is then taken as the peak frequency.

 Parameters

 input_signal : np.array
 fs : float>0
 time_freq_rep : np.array
 2D array with the PWVD representation.
 percentile : 0<float<100, optional

 Returns

 peak_freqs, peak_inds : np.array
 Arrays with same size as the input_signal. peak_freqs is the
 frequencies in Hz, peak_inds is the row index.

 See Also

 find_lowest_intense_harmonic_across_TFR
 get_most_intense_harmonic
 '''
 peak_inds = find_lowest_intense_harmonic_across_TFR(abs(time_freq_rep), **kwargs)
 freqs = np.linspace(0, fs*0.5, input_signal.size)
 peak_freqs = freqs[peak_inds]
 return peak_freqs, peak_inds

[docs]def find_lowest_intense_harmonic_across_TFR(tf_representation, **kwargs):
 '''
 '''
 return np.apply_along_axis(get_most_intense_harmonic,0,tf_representation, **kwargs)

[docs]def get_most_intense_harmonic(time_slice, **kwargs):
 '''Searches a single column in a 2D array for the first region which
 crosses the given percentile threshold.
 '''
 one_region_above_threshold = get_first_region_above_threshold(time_slice, **kwargs)
 loudest_harmonic = get_midpoint_of_a_region(one_region_above_threshold)
 return loudest_harmonic

[docs]def get_midpoint_of_a_region(region_object):
 '''
 '''
 if region_object is None:
 return 0

 mid_point = int(np.mean([region_object[0].stop,region_object[0].start]))
 return mid_point

[docs]def accelaration(X, fs):
 '''Calculates the absolute accelrateion of a frequency profile in kHz/ms^2
 '''
 speed_X = speed(X,fs)
 return np.abs(np.gradient(speed_X))

[docs]def speed(X,fs):
 '''Calculates the abs speed of the frequency profile in kHz/ms
 '''
 speed = 10**-6*np.abs(np.gradient(X))/(1.0/fs)
 return speed

[docs]def get_first_region_above_threshold(input_signal,**kwargs):
 '''Takes in a 1D signal expecting a few peaks in it above the percentil threshold.
 If all samples are of the same value, the region is restricted to the first two samples.

 Parameters

 input_signal :np.array
 percentile : 0<float<100, optional
 The percentile threshold used to set the threshold.
 Defaults to 99.5

 Returns

 region_location : tuple or None
 If there is at least one region above the threshold a tuple with
 the output from scipy.ndimage.find_objects. Otherwise None.

 '''
 percentile = kwargs.get('percentile', 99.5)
 above_threshold = input_signal > np.percentile(input_signal, percentile)
 regions, num_regions = ndimage.label(above_threshold)

 if num_regions>=1:
 region_location = ndimage.find_objects(regions)[0]
 return region_location
 else:
 return None

[docs]def frequency_spike_detection(X, fs, **kwargs):
 '''Detects spikes in the frequency profile by
 monitoring the accelration profile through the sound.

 Parameters

 X : np.array
 A frequency profile with sample-level estimates of frequency in Hz
 fs : float>0
 max_acc : float>0, optional
 Maximum acceleration in the frequency profile.
 Defaults to 0.5kHz/ms^2

 Returns

 anomalous : np.array
 Boolean
 '''
 max_acc = kwargs.get('max_acc', 1.0) # kHz/ms^2
 freq_accelaration = accelaration(X,fs)
 anomalous = freq_accelaration>max_acc
 return anomalous, freq_accelaration

 Source code for itsfm.measure

#!/usr/bin/env python2
-*- coding: utf-8 -*-
"""Module that measures each continuous CF and FM segment with either
inbuilt or user-defined functions.

"""
from itsfm.signal_processing import *
from itsfm.sanity_checks import make_sure_its_negative
import itsfm.measurement_functions as measurefuncs
from datetime import datetime
import numpy as np
import pandas as pd
from scipy import ndimage

[docs]def measure_hbc_call(call, fs, cf, fm, **kwargs):
 '''Performs common or unique measurements on each of the Cf
 and FM segments detected.

 Parameters

 audio : np.array
 fs : float>0.
 Frequency of sampling in Hz.
 cf : np.array
 Boolean array with True indicating samples that define the CF
 fm : np.array
 Boolean array with True indicating samples that define the FM
 measurements : list, optional
 List with measurement functions

 Returns

 measurement_values : pd.DataFrame
 A wide format dataframe with one row corresponding to all
 the measured values for a CF or FM segment

 See Also

 itsfm.measurement_functions

 Example

 Create a call with fs and make fake CF and FM segments

 >>> fs = 1.0
 >>> call = np.random.normal(0,1,100)
 >>> cf = np.concatenate((np.tile(0, 50), np.tile(1,50))).astype('bool')
 >>> fm = np.invert(cf)

 Get the default measurements by not specifying any measurements explicitly.

 >>> sound_segments, measures = measure_hbc_call(call, fs,
 cf, fm)
 >>> print(measures)

 And here's an example with some custom functions.The default measurements
 will appear in addition to the custom measurements.

 >>> from itsfm.measurement_functions import measure_peak_amplitude, measure_peak_frequency
 >>> custom_measures = [peak_frequency, measure_peak_amplitude]
 >>> sound_segments, measures = measure_hbc_call(call, fs,
 cf, fm,
 measurements=custom_measures)
 '''
 all_cf_fm_segments = parse_cffm_segments(cf, fm)
 if len(all_cf_fm_segments)==0:
 raise ValueError('No CF or FM segments were found -- please re-check')

 if kwargs.get('measurements') is not None:
 all_measurements = common_measurements() + kwargs['measurements']
 else:
 all_measurements = common_measurements()

 measurement_values = []
 for segment in all_cf_fm_segments:
 segment_id, segment_indices = segment
 segment_measurements = perform_segment_measurements(call, fs,
 segment,
 all_measurements, **kwargs)
 measurement_values.append(segment_measurements)

 measurement_values = pd.concat(measurement_values).reset_index(drop=True)

 return measurement_values

[docs]def parse_cffm_segments(cf, fm):
 '''Recognises continuous stretches of Cf and FM segments,
 organises them into separate 'objects' and orders them in time.

 Parameters

 cf, fm : np.array
 Boolean arrays indicating which samples are CF/FM.

 Returns

 cffm_regions_numbered : np.array with tuples.
 Each tuple corresponds to one CF or FM region in the audio.
 The tuple has two entries 1) the region identifier, eg. 'fm1'
 and 2) the indices that correspond to the region eg. slice(1,50)

 Example

 # an example sound with two cfs and an fm in the middle

 >>> cf = np.array([0,1,1,0,0,0,1,1,0]).astype('bool')
 >>> fm = np.array([0,0,0,1,1,1,0,0,0]).astype('bool')
 >>> ordered_regions = parse_cffm_segments(cf, fm)
 >>> print(ordered_regions)
 [['cf1', slice(1, 3, None)], ['fm1', slice(3, 6, None)],
 ['cf2', slice(6, 8, None)]]
 '''
 cf_regions, fm_regions = find_regions(cf), find_regions(fm)
 cf_fm_regions_ordered = combine_and_order_regions(cf_regions, fm_regions)
 cffm_regions_numbered = assign_cffm_regionids(cf_fm_regions_ordered, cf_regions,
 fm_regions)
 return cffm_regions_numbered

[docs]def perform_segment_measurements(full_sound, fs,
 segment, functions_to_apply, **kwargs):
 '''Performs one or more measurements on a specific segment of a full audio
 clip.

 Parameters

 full_sound : np.array
 fs : float>0
 segment : tuple
 First object is a string with the segment's id, eg. 'fm1' or 'cf2'
 Second object is a slice with the indices of the segment, eg. slice(0,100)
 functions_to_apply : list of functions
 Each function must be a 'measurement function'. A measurement function
 is one that accepts a strict set of inputs. check See Also for more
 details.

 Returns

 results : pd.DataFrame
 A single row with all the measurements results.
 The first column is always the 'regionid', the rest of the columns
 are measurement function dependent.

 Example

 Here we'll create a short segment and take the rms and the peak value of
 the segment. The `relevant_region` is not an FM region, it is only labelled
 so here to show how it works with the rest of the package!

 >>> np.random.seed(909)
 >>> audio = np.random.normal(0,1,100)
 >>> relevant_region = ('fm1',slice(10,30))

 The sampling rate doesn't matter for the custom functions defined below,
 but, it may be important for some other functions.

 >>> fs = 1 # Hz
 >>> from itsfm.measurement_functions import measure_rms, measure_peak
 >>> results = perform_segment_measurements(audio, fs, relevant_region,
 [measure_rms, measure_peak])
 '''
 segment_id, segment_location = segment

 measurement_values = {}
 for each_function in functions_to_apply:
 value = each_function(full_sound, fs, segment_location, **kwargs)
 measurement_values.update(value)
 results = pd.DataFrame(data=measurement_values, index=[0])
 results['region_id'] = segment_id
 return results

[docs]def find_regions(X):
 '''
 '''
 region_ids, num_regions = ndimage.label(X.flatten())
 region_locations = np.array(ndimage.find_objects(region_ids)).flatten()
 return region_locations

[docs]def combine_and_order_regions(cf_slices, fm_slices):
 '''
 '''
 cffm_regions = np.sort(np.concatenate((cf_slices, fm_slices)))
 return cffm_regions

[docs]def assign_cffm_regionids(cffm, cf_regions, fm_regions):
 '''
 '''
 cf_counter = 1
 fm_counter = 1

 assigned_ids = []
 for i, region in enumerate(cffm):
 if region in cf_regions:
 regiontype = 'cf'
 region_number = str(cf_counter)
 cf_counter += 1
 elif region in fm_regions:
 regiontype = 'fm'
 region_number = str(fm_counter)
 fm_counter += 1
 else:
 raise ValueError('Could not find the current regions, please check the region', region)
 region_id = regiontype + region_number
 assigned_ids.append([region_id, region])
 return assigned_ids

[docs]def common_measurements():
 '''Loads the default common measurement set
 for any region.
 '''
 common_funcs = [getattr(measurefuncs, each) for each in ['start', 'stop',
 'duration']]
 return common_funcs

 Source code for itsfm.measurement_functions

-*- coding: utf-8 -*-
"""
This is a set of *measurement functions* which are used to measure various
things about a part of an audio. A *measurement function* is a specific kind of
 function which accepts three arguments and outputs a dictionary.

What is a *measurement function*:
#################################
A *measurement function* is a specific kind of function which accepts three arguments and outputs a dictionary.
User-defined functions can be used to perform custom measurements on the segment of interest.

Measurement function parameters

 #. the full audio, a np.array
 #. the sampling rate, a float>0
 #. the `segment`, a slice object which defines the span
 of the segment. For instance ('fm1', slice(0,100))

What needs to be returned:

 A measurement function must return a dictionary with >1 keys that are strings
 and items that can be easily incorporated into a Pandas DataFrame and viewed on
 a csv file with ease. Ideal item types include strings, floats, or tuples.

 See the source code of the built-in measurement functions below for an example of
 how to satisfy the measurement function pattern.

Attention

Remember to name the output of the measurement function properly.
If the output key of one measurement function is the same as the
other, it will get overwritten in the final dictionary!

"""
from itsfm.signal_processing import *

[docs]def measure_rms(audio, fs, segment ,**kwargs):
 '''

 See Also

 itsfm.signal_processing.rms
 '''
 return {'rms': rms(audio[segment])}

[docs]def measure_peak_amplitude(audio, fs, segment ,**kwargs):
 '''
 '''
 return {'peak_amplitude': np.max(np.abs(audio[segment]))}

[docs]def start(audio, fs, segment ,**kwargs):
 '''
 '''
 start_time = segment.start/fs
 return {'start': start_time}

[docs]def stop(audio, fs, segment ,**kwargs):
 '''
 '''
 end_time = (segment.stop)/fs
 return {'stop':end_time}

[docs]def duration(audio, fs, segment ,**kwargs):
 '''
 '''
 durn = (segment.stop-segment.start)/float(fs)
 return {'duration':durn}

[docs]def measure_peak_frequency(audio, fs, segment ,**kwargs):
 '''

 See Also

 itsfm.signal_processing.get_peak_frequency
 '''
 peak_freq, freq_res = get_peak_frequency(audio[segment], fs)
 return {'peak_frequency':peak_freq, 'peak_freq_resolution':freq_res}

[docs]def measure_terminal_frequency(audio, fs, segment,**kwargs):
 '''

 See Also

 itsfm.get_terminal_frequency
 '''
 terminal_freq, threshold = get_terminal_frequency(audio[segment],
 fs, **kwargs)
 return {'terminal_frequency':terminal_freq,
 'terminal_frequency_threshold':threshold}

 Source code for itsfm.segment

-*- coding: utf-8 -*-
"""Module that segments the horseshoebat call into FM and CF parts
The primary logic of this

"""
import warnings
import numpy as np
import scipy.interpolate as interpolate
from scipy import ndimage
import scipy.ndimage.filters as flts
import scipy.signal as signal
from itsfm.signal_processing import *
from itsfm.sanity_checks import make_sure_its_positive
from itsfm.frequency_tracking import get_pwvd_frequency_profile
import itsfm.refine_cfm_regions as refine_cfm
from itsfm.signal_cleaning import suppress_background_noise
from itsfm.signal_cleaning import conditionally_set_to

[docs]def segment_call_into_cf_fm(call, fs, **kwargs):
 '''Function which identifies regions into CF and FM based on the following process.

 1. Candidate regions of CF and FM are first produced based on the segmentation
 method chosen'.

 2. These candidate regions are then refined based on the
 user's requirements (minimum length of region, maximum number of CF/FM
 regions in the sound)

 3. The finalised CF and FM regions are output as Boolean arrays.

 Parameters

 call : np.array
 Audio with horseshoe bat call
 fs : float>0
 Frequency of sampling in Hz.
 segment_method : str, optional
 One of ['peak_percentage', 'pwvd', 'inst_freq'].
 Checkout 'See Also' for more information.
 Defaults to 'peak_percentage'
 refinement_method : function, str, optional
 The method used to refine the initial CF and FM
 candidate regions according to the different constraints
 and rules set by the user.

 Defaults to 'do_nothing'

 Returns

 cf_samples, fm_samples : np.array
 Boolean numpy array showing which of the samples belong
 to the cf and the fm respectively.

 info : dictionary
 Post-processing information depending on
 the methods used.

 Example

 Create a chirp in the middle of a somewhat silent recording

 >>> import matplotlib.pyplot as plt
 >>> import numpy as np
 >>> from itsfm.simulate_calls import make_fm_chirp, make_tone
 >>> from itsfm.view_horseshoebat_call import plot_movingdbrms
 >>> from itsfm.view_horseshoebat_call import visualise_call, make_x_time
 >>> from itsfm.view_horseshoebat_call import plot_cffm_segmentation
 >>> fs = 44100
 >>> start_f, end_f = 1000, 10000
 >>> chirp = make_fm_chirp(start_f, end_f, 0.01, fs)
 >>> tone_freq = 11000
 >>> tone = make_tone(tone_freq, 0.01, fs)
 >>> tone_start = 30000; tone_end = tone_start+tone.size
 >>> rec = np.random.normal(0,10**(-50/20), 44100)
 >>> chirp_start, chirp_end = 10000, 10000 + chirp.size
 >>> rec[chirp_start:chirp_end] += chirp
 >>> rec[tone_start:tone_end] += tone
 >>> rec /= np.max(abs(rec))
 >>> actual_fp = np.zeros(rec.size)
 >>> actual_fp[chirp_start:chirp_end] = np.linspace(start_f, end_f, chirp.size)
 >>> actual_fp[tone_start:tone_end] = np.tile(tone_freq, tone.size)

 Track the frequency of the recording and segment it according to frequency
 modulation

 >>> cf, fm, info = segment_call_into_cf_fm(rec, fs, signal_level=-10,
 segment_method='pwvd',)

 View the output and plot the segmentation results over it:
 >>> plot_cffm_segmentation(cf, fm, rec, fs)

 See Also

 segment_by_peak_percentage
 segment_by_pwvd
 segment_by_inst_frequency
 itsfm.refine_cfm_regions
 refine_cf_fm_candidates

 Notes

 The post-processing information in the object `info` depends on the method
 used.

 peak_percentage : the two keys 'fm_re_cf' and 'cf_re_fm' which are the
 relative dBrms profiles of FM with relation to the CF portion and vice versa

 pwvd :

 '''
 segment_method = kwargs.get('segment_method', 'peak_percentage')
 refinement_method = kwargs.get('refinement_method', 'do_nothing')
 # identify candidate CF and FM regions
 cf_candidates, fm_candidates, info = perform_segmentation[segment_method](call, fs,
 **kwargs)

 cf, fm = refine_cf_fm_candidates(refinement_method,
 [cf_candidates, fm_candidates],
 fs, info, **kwargs)

 return cf, fm, info

[docs]def refine_cf_fm_candidates(refinement_method, cf_fm_candidates,
 fs, info,
 **kwargs):
 '''Parses the refinement method, checks if its string or function
 and calls the relevant objects.

 Parameters

 refinement_method : str/function
 A string from the list of inbuilt functions in the module
 `refine_cfm_regions` or a user-defined function.
 Defaults to `do_nothing`, an inbuilt function which
 doesn't returns the candidate Cf-fm regions without
 alteration.
 cf_fm_candidates : list with 2 np.arrays
 Both np.arrays need to be Boolean and of the same size as the original
 audio.
 fs : float>0
 info : dictionary

 Returns

 cf, fm : np.array
 Boolean arrays wher True indicates the sample is of the corresponding
 region.

 '''

 if isinstance(refinement_method, str):
 refinement_function = getattr(refine_cfm, refinement_method)
 cf_samples, fm_samples = refinement_function(cf_fm_candidates,
 fs,
 info,
 **kwargs)
 elif callable(refinement_method):
 # could cause issues with inbuilt functions apparently?
 cf_samples, fm_samples = refinement_method(cf_fm_candidates,
 fs,
 info,
 **kwargs)
 else:
 raise ValueError('Unable to parse refinement method - please check input:')

 return cf_samples, fm_samples

[docs]def segment_by_peak_percentage(call, fs, **kwargs):
 '''This is ideal for calls with one clear CF section with the CF
 portion being the highest frequency in the call: bat/bird CF-FM
 calls which have on CF and one/two sweep section.

 Calculates the peak frequency of the whole call and performs
 low+high pass filtering at a frequency slightly lower than the peak frequency.

 Parameters

 call : np.array
 fs : float>0
 peak_percentage : 0<float<1, optional
 This is the fraction of the peak at which low and high-pass filtering happens.
 Defaults to 0.98.

 Returns

 cf_samples, fm_samples : np.array
 Boolean array with True indicating that sample has been categorised
 as being CF and/or FM.
 info : dictionary
 With keys 'fm_re_cf' and 'cf_re_fm' indicating the relative
 dBrms profiles of the candidate FM regions relative to Cf
 and vice versa.

 Notes

 This method unsuited for audio with non-uniform call envelopes.
 When there is high variation over the call envelope, the peak frequency
 is likely to be miscalculated, and thus lead to wrong segmentation.

 This method is somewhat inspired by the protocol in Schoeppler et al. 2018.
 However, it differs in the important aspect of being done entirely in the
 time domain. Schoeppler et al. 2018 use a spectrogram based method
 to segment the CF and FM segments of H. armiger calls.

 References

 [1] Schoeppler, D., Schnitzler, H. U., & Denzinger, A. (2018).
 Precise Doppler shift compensation in the hipposiderid bat,
 Hipposideros armiger. Scientific Reports, 8(1), 1-11.

 See Also

 itsfm.segment.pre_process_for_segmentation for further keyword arguments related to high/low pass filtering.
 '''
 cf_dbrms, fm_dbrms = pre_process_for_segmentation(call, fs, **kwargs)
 fm_re_cf = fm_dbrms - cf_dbrms
 cf_re_fm = cf_dbrms - fm_dbrms

 fm_samples = fm_re_cf > 0
 cf_samples = cf_re_fm > 0

 fm_samples = suppress_background_noise(fm_samples, call, **kwargs)
 cf_samples = suppress_background_noise(cf_samples, call, **kwargs)

 info = {'fm_re_cf': fm_re_cf,
 'cf_re_fm':cf_re_fm,
 'cf_dbrms':cf_dbrms,
 'fm_dbrms':fm_dbrms}

 return cf_samples, fm_samples, info

[docs]def segment_by_pwvd(call, fs, **kwargs):
 '''This method is technically more accurate in segmenting CF and FM portions
 of a sound. The Pseudo-Wigner-Ville Distribution of the input signal
 is generated.

 Parameters

 call : np.array
 fs : float>0
 fmrate_threshold : float >=0
 The threshold rate of frequency modulation in kHz/ms. Beyond this value a segment
 of audio is considered a frequency modulated region.
 Defaults to 1.0 kHz/ms

 Returns

 cf_samples, fm_samples : np.array
 Boolean array of same size as call indicating candidate CF and FM regions.

 info : dictionary
 See get_pwvd_frequency_profile for the keys it outputs in the `info`
 dictioanry. In addition, another key 'fmrate' is also calculated
 which has an np. array with the rate of frequency modulation across
 the signal in kHz/ms.

 Notes

 This method may takes some time to run. It is computationally intensive.
 This method may not work very well in the presence of multiple harmonics
 or noise. Some basic tweaking of the optional parameters may be required.

 See Also

 get_pwvd_frequency_profile

 Example

 Let's create a two component call with a CF and an FM part in it
 >>> from itsfm.simulate_calls import make_tone, make_fm_chirp, silence
 >>> from itsfm.view_horseshoebat_call import plot_cffm_segmentation
 >>> from itsfm.view_horseshoebat_call import make_x_time
 >>> fs = 22100
 >>> tone = make_tone(5000, 0.01, fs)
 >>> sweep = make_fm_chirp(1000, 6000, 0.005, fs)
 >>> gap = silence(0.005, fs)
 >>> full_call = np.concatenate((tone, gap, sweep))
 >>> # reduce rms calculation window size because of low sampling rate!
 >>> cf, fm, info = segment_by_pwvd(full_call,
 fs,
 window_size=10,
 signal_level=-12,
 sample_every=1*10**-3,
 extrap_length=0.1*10**-3)
 >>> w,s = plot_cffm_segmentation(cf, fm, full_call, fs)
 >>> s.plot(make_x_time(cf,fs), info['fitted_fp'])
 '''
 fmrate_threshold = kwargs.get('fmrate_threshold', 1.0) # kHz/ms

 clean_frequency_profile, info = get_pwvd_frequency_profile(call, fs, **kwargs)

 fmrate, fitted_freq_profile = whole_audio_fmrate(clean_frequency_profile,
 fs,
 **kwargs)

 info['fmrate'] = fmrate
 info['cleaned_fp'] = clean_frequency_profile
 info['fitted_fp'] = fitted_freq_profile

 fm_candidates = fmrate > fmrate_threshold
 fm_samples = conditionally_set_to(fm_candidates,
 fitted_freq_profile==0,
 False)

 cf_candidates = fmrate <= fmrate_threshold
 cf_samples = conditionally_set_to(cf_candidates,
 fitted_freq_profile==0, False)

 fm_samples = suppress_background_noise(fm_samples, call, **kwargs)
 cf_samples = suppress_background_noise(cf_samples, call, **kwargs)

 return cf_samples, fm_samples, info

[docs]def whole_audio_fmrate(whole_freq_profile, fs, **kwargs):
 '''
 When a recording has multiple components to it, there are silences
 in between. These silences/background noise portions are assigned
 a value of 0 Hz.

 When a 'whole audio' fm rate is naively calculated by taking the diff
 of the whole frequency profile, there will be sudden jumps in the fm-rate
 due to the silent parts with 0Hz and the sound segments with non-zero
 segments. Despite these spikes being very short, they then propagate their
 influence due to the median filtering that is later down downstream. This
 essentially causes an increase of false positive FM segments because of the
 apparent high fmrate.

 To overcome the issues caused by the sudden zero to non-zero transitions
 in frequency values, this function handles each non-zero sound segment
 separately, and calculates the fmrate over each sound segment independently.

 Parameters

 whole_freq_profile : np.array
 Array with sample-level frequency values of the same size as the
 audio.
 fs : float>0

 Returns

 fmrate : np.array
 The rate of frequency modulation in kHz/ms. Same size as `whole_freq_profile`
 Regions in `whole_freq_profile` with 0 frequency are set to 0kHz/ms.
 fitted_frequency_profile : np.aray
 The downsampled, smoothed version of `whole_freq_profile`, of the same size.

 Attention

 The `fmrate` *must* be processed further downstream!
 In the whole-audio `fmrate` array, all samples that were 0 frequency
 in the original `whole_freq_profile` are set to 0 kHz/ms!!!

 See Also

 calculate_fm_rate

 Example

 Let's make a synthetic multi-component sound with 2 FMs and 1 CF component.

 >>> fs = 22100
 >>> onems = int(0.001*fs)
 >>> sweep1 = np.linspace(1000,2000,onems) # fmrate of 1kHz/ms
 >>> tone = np.tile(3000, 2*onems) # CF part
 >>> sweep2 = np.linspace(4000,10000,3*onems) # 2kHz/ms
 >>> gap = np.zeros(10)
 >>> freq_profile = np.concatenate((sweep1, gap, tone, gap, sweep2))
 >>> fmrate, fit_freq_profile = whole_audio_fmrate(freq_profile, fs)

 '''

 sound_segments, num_segments = ndimage.label(whole_freq_profile.flatten()>0)
 location_segments = ndimage.find_objects(sound_segments)

 whole_fmrate = np.zeros(whole_freq_profile.size)
 fitted_frequency_profile = whole_freq_profile.copy()

 if num_segments <1 :
 raise ValueError('No non-zero frequency segments detected!')

 for index, location in enumerate(location_segments):
 segment_frequency_profile = whole_freq_profile[location]
 fmrate, fitted_freq_profile = calculate_fm_rate(segment_frequency_profile,
 fs, **kwargs)
 whole_fmrate[location] = fmrate
 fitted_frequency_profile[location] = fitted_freq_profile

 return whole_fmrate, fitted_frequency_profile

def segment_by_inst_frequency(call, fs, **kwargs):

 raise NotImplementedError('Plain Instant Tracking has not yet been implemented!')

 return None, None, None

[docs]def calculate_fm_rate(frequency_profile, fs, **kwargs):
 '''A frequency profile is generally oversampled. This means that
 there will be many repeated values and sometimes minor drops in
 frequency over time. This leads to a higher FM rate than is actually
 there when a sample-wise diff is performed.

 This method downsamples the frequency profile, fits a polynomial
 to it and then gets the smoothened frequency profile with unique values.

 The sample-level FM rate can now be calculated reliably.

 Parameters

 frequency_profile : np.array
 Array of same size as the original audio. Each sample has
 the estimated instantaneous frequency in Hz.
 fs : float>0
 Sampling rate in Hz
 medianfilter_length : float>0, optional
 The median filter kernel size which is used to filter out
 the noise in the frequency profile.
 sample_every : float, optional
 For default see fit_polynomial_on_downsampled_version

 Returns

 fm_rate : np.array
 Same size as frequency_profile. The rate of frequency modulation in
 kHz/ms

 See Also

 fit_polynomial_on_downsampled_version
 '''

 medianfilter_length = kwargs.get('medianfilter_length', 0.25*10**-3)
 try:
 medianfilter_samples = calc_proper_kernel_size(medianfilter_length, fs)
 except:
 raise ValueError('The current medianfilter_length of %fs is too short, increase it a bit more'%medianfilter_length)

 fitted = fit_polynomial_on_downsampled_version(frequency_profile, fs, **kwargs)

 fm_rate_hz_per_sec = np.abs(np.gradient(fitted))
 median_filtered = flts.percentile_filter(fm_rate_hz_per_sec, 50,
 medianfilter_samples)
 fm_rate =10**-6*(median_filtered/(1/fs))
 return fm_rate, fitted

[docs]def fit_polynomial_on_downsampled_version(frequency_profile, fs, **kwargs):
 """Chooses a subset of all points in the input frequency_profile
 and fits a piecewise polynomial on it. The start and end of
 the frequency profile are not altered, and chosen as they
 are.

 Parameters

 frequency_profile : np.array
 The estimated instantaneous frequency in Hz at each sample.
 fs : float>0
 sample_every : float>0, optional
 The time gap between consecutive points.
 Defaults to a calculated value which
 corresponds to 1% of the frequency profiles
 duration.
 interpolation_kind : int, optional
 The polynomial order to use while fitting the points.
 Defaults to 1, which is a piecewise linear fit.

 Returns

 fitted : np.array
 Same size as frequency_profile.
 """

 sample_every = kwargs.get('sample_every') #seconds
 if sample_every is None:
 sample_every = fraction_duration(frequency_profile,fs, 0.01)

 interpolation_kind = kwargs.get('interpolation_kind', 1) # polynomial order
 ds_factor = int(fs*sample_every)

 full_x = np.arange(frequency_profile.size)
 partX = np.concatenate((full_x[:2], full_x[3::ds_factor],
 full_x[-2:])).flatten()
 partX = np.unique(partX).flatten()
 partY = frequency_profile[partX]

 fit = interpolate.interp1d(partX, partY, kind=interpolation_kind)
 fitted = fit(np.arange(frequency_profile.size))
 return fitted

[docs]def fraction_duration(input_array, fs, fraction):
 '''
 calculates the duration that matches the
 required fraction of the input array's duration.

 The fraction must be 0 < fraction < 1
 '''
 if 0 < fraction < 1.0:
 whole_duration = input_array.size/fs
 duration = whole_duration*fraction
 check_relevant_duration(duration, fs)
 return duration
 else:
 raise ValueError(f"The fraction value:{fraction} needs to be >0 & <1")

[docs]def check_relevant_duration(duration, fs):
 '''
 checks that the duration is more than the inter-sample duration.
 '''
 if duration <= 1/fs:
 raise ValueError(f'The suggested duration {duration} is less than\
 the inter-sample distance (1/fs): {1/fs}')

[docs]def refine_candidate_regions():
 '''Takes in candidate CF and FM regions and tries to satisfy the
 constraints set by the user.
 '''
 pass

perform_segmentation = {'peak_percentage':segment_by_peak_percentage,
 'pwvd':segment_by_pwvd,
 'inst_freq':segment_by_inst_frequency}

[docs]def check_segment_cf_and_fm(cf_samples, fm_samples, fs, **kwargs):
 '''
 '''

 main_cf = get_cf_region(cf_samples, 1)
 main_fm = get_fm_regions(fm_samples, fs, **kwargs)

 return main_cf, main_fm

[docs]def get_cf_region(cf_samples, fs, **kwargs):
 '''TODO : generalise to multiple CF regions

 Parameters

 cf_samples : np.array
 Boolean with True indicating a Cf region.
 fs : float

 Returns

 cf_region : np.array
 The longest continuous stretch

 '''
 min_cf_duration = kwargs.get('min_cf_duration', 0.001)
 make_sure_its_positive(min_cf_duration, variable='min_cf_duration')
 min_cf_samples = int(fs*min_cf_duration)
 cf_region = identify_valid_regions(cf_samples, 1)
 if sum(cf_region) < min_cf_samples:
 msg1 = 'CF segment of minimum length (%3f)s'%(min_cf_duration)
 msg2 = ' could not be found'
 raise CFIdentificationError(msg1+msg2)

 return cf_region

[docs]def get_fm_regions(fm_samples, fs, **kwargs):
 '''TODO : generalise to multiple FM regions
 Parameters

 fm_samples : np.array
 Boolean numpy array with candidate FM samples.
 fs : float>0
 min_fm_duration : float, optional
 minimum fm duration expected in seconds. Any fm segment lower than this
 duration is considered to be a bad read and discarded.
 Defaults to 0.5 milliseconds.
 Returns

 valid_fm : np.array
 Boolean numpy array with the corrected fm samples.

 '''
 min_fm_duration = kwargs.get('min_fm_duration', 0.5*10**-3)
 make_sure_its_positive(min_fm_duration, variable='min_fm_duration')
 min_fm_samples = int(fs*min_fm_duration)

 valid_fm = np.zeros(fm_samples.size, dtype='bool')
 try:
 main_fm = identify_valid_regions(fm_samples, 2)
 regions, region_id_and_samples = identify_maximum_contiguous_regions(main_fm, 2)
 regions, region_lengths = np.unique(region_id_and_samples[:,0],
 return_counts=True)
 regions_above_min_length = regions[region_lengths >= min_fm_samples]

 if len(regions_above_min_length) >0:
 valid_rows = []
 for each in regions_above_min_length:
 valid_rows.append(np.argwhere(region_id_and_samples[:,0]==each))
 valid_rows = np.concatenate(valid_rows).flatten()
 valid_samples = region_id_and_samples[valid_rows,1].flatten()

 valid_fm[valid_samples] = True

 except:
 candidate_fm = identify_valid_regions(fm_samples, 1)
 if np.sum(candidate_fm) >= min_fm_samples:
 valid_fm = candidate_fm.copy()

 return valid_fm

[docs]def segment_call_from_background(audio, fs,**kwargs):
 '''Performs a wavelet transform to track the signal within the relevant portion of the bandwidth.

 This methods broadly works by summing up all the signal content
 above the ```lowest_relevant_frequency``` using a continuous wavelet transform.

 If the call-background segmentation doesn't work well it's probably due
 to one of these things:

 #. Incorrect ``background_threshold`` : Play around with different ``background_threshold values``.

 #. Incorrect ``lowest_relevant_frequency`` : If the lowest relevant frequency is set outside of the signal's actual frequency range, then the segmentation will fail.
 Try lower this parameter till you're sure all of the signal's spectral range is above it.

 #. Low signal spectral range : This method uses a continuous wavelet transform to localise the relevant signal. Wavelet transforms have high temporal resolution
 in for high frequencies, but lower temporal resolutions for lower frequencies.
 If your signal is dominantly low-frequency, try resampling it to a lower
 sampling rate and see if this works?

 If the above tricks don't work, then try bandpassing your signal - may be it's
 an issue with the in-band signal to noise ratio.

 Parameters

 audio : np.array
 fs : float>0
 Frequency of sampling in Hertz.
 lowest_relevant_freq : float>0, optional
 The lowest frequency band in Hz whose coefficients will be tracked.
 The coefficients of all frequencies in the signal >= the lowest relevant
 frequency are tracked. This is the lowest possible frequency the signal can take. It is best to give a few kHz of berth.
 Defaults to 35kHz.
 background_threshold : float<0, optional
		The relative threshold which is used to define the background. The segmentation is
		performed by selecting the region that is above background_threshold dB relative
		to 	the max dB rms value in the audio.
		Defaults to -20 dB
 wavelet_type : str, optional
 The type of wavelet which will be used for the continuous wavelet transform.
 Run `pywt.wavelist(kind='continuous')` for all possible types in case the default
 doesn't seem to work.
 Defaults to mexican hat, 'mexh'
 scales : array-like, optional
 The scales to be used for the continuous wavelet transform.
 Defaults to np.arange(1,10).

 Returns

 potential_region : np.array
 A boolean numpy array where True corresponds to the regions which
 are call samples, and False are the background samples. The single
 longest continuous region is output.
 dbrms_profile : np.array
 The dB rms profile of the summed up wavelet transform for all
 centre frequencies >= lowest_relevant_frequency.s

 Raises

 ValueError
 When lowest_relevant_frequency is too high or not included in
 the centre frequencies of the default/input scales for
 wavelet transforms.
 IncorrectThreshold
 When the dynamic range of the relevant part of the signal is smaller
 or equal to the background_threshold.

 '''
 lowest_relevant_freq = kwargs.get('lowest_relevant_freq', 35000.0)
 make_sure_its_positive(lowest_relevant_freq, variable='lowest_relevant_freq')

 wavelet_type = kwargs.get('wavelet_type', 'mexh')
 background_threshold = kwargs.get('background_threshold', -20)
 scales = kwargs.get('scales',np.arange(1,10))

 coefs, freqs = pywt.cwt(audio,
 scales,
 wavelet_type,
 sampling_period=1.0/(fs))
 relevant_freqs = freqs[freqs>=lowest_relevant_freq]
 if np.sum(relevant_freqs) == 0:
 raise ValueError('The lowest relevant frequency is too high. Please re-check the value')

 within_centre_freqs = np.logical_and(np.min(freqs)<=lowest_relevant_freq,
 np.max(freqs)>=lowest_relevant_freq)
 if not within_centre_freqs:
 raise ValueError('The lowest relevant frequency %.2f is not included in the centre frequencies of the wavelet scales.\
 Increase the scale range.'%np.round(lowest_relevant_freq,2))

 lowest_frequency_row = int(np.argwhere(np.min(relevant_freqs)==freqs))
 summed_profile = np.sum(abs(coefs[:lowest_frequency_row+1,:]), 0)

 dbrms_profile = dB(moving_rms_edge_robust(summed_profile, **kwargs))
 dbrms_profile -= np.max(dbrms_profile)

 if np.min(dbrms_profile) >= background_threshold:
 raise IncorrectThreshold('The dynamic range of the signal is lower than the background threshold.\
 Please decrease the background threshold')

 potential_region = identify_valid_regions(dbrms_profile>=background_threshold, 1)

 return potential_region, dbrms_profile

[docs]def identify_valid_regions(condition_satisfied, num_expected_regions=1):
 '''

 Parameters

 condition_satisfied : np.array
 Boolean numpy array with samples either being True or False.
 The array may have multiple regions which satisfy a conditions (True)
 separated by smaller regions which don't (False).
 num_expected_regions : int > 0
 The number of expected regions which satisfy a condition.
 If >2, then the first two longest continuous regions will be returned,
 and the smaller regions will be suppressed/eliminated.
 Defaults to 1.

 Returns

 valid_regions : np.array
 Boolean array which identifies the regions with the longest
 contiguous lengths.
 '''
 regions_of_interest, all_region_data = identify_maximum_contiguous_regions(condition_satisfied, num_expected_regions)
 valid_samples = []

 all_region_ids = all_region_data[:,0]
 for each in regions_of_interest:
 valid_samples.append(all_region_data[all_region_ids==each,1])
 valid_samples = np.concatenate(valid_samples)

 valid_regions = np.asarray(np.zeros(condition_satisfied.size), dtype='bool')
 valid_regions[valid_samples] = True

 return valid_regions

[docs]def identify_maximum_contiguous_regions(condition_satisfied, number_regions_of_interest=1):
 '''Given a Boolean array - this function identifies regions of contiguous samples that
 are true and labels each with its own region_number.

 Parameters

 condition_satisfied : np.array
 Numpy array with Boolean (True/False) entries for each sample.
 number_regions_of_interest : integer > 1
 Number of contiguous regions which are to be detected. The region ids
 are output in descending order (longest-->shortest).
 Defaults to 1.

 Returns

 region_numbers : list
 List with numeric IDs given to each contiguous region which is True.
 region_id_and_samples : np.array
 Two columns numpy array. Column 0 has the region_number, and Column 1 has
 the individual samples that belong to each region_number.

 Raises

 ValueError : This happens if the condition_satisfied array has no entries that are True.

 '''
 region_number = 0
 region_and_samples = []
 # identify the Trues, and assign the sample index to a region number
 for i,each in enumerate(condition_satisfied):
 if each:
 region_and_samples.append([region_number, i])
 else:
 region_number += 1
 # count number of samples in each region and output the top 1/2/... regions
 try:
 region_id_and_samples = np.concatenate(region_and_samples).reshape(-1,2)
 regions, region_length = np.unique(region_id_and_samples[:,0], return_counts=True)

 region_numbers = []
 for i in range(number_regions_of_interest):
 if i ==0:
 index = np.argmax(region_length)
 region_numbers.append(regions[index])
 remaining_region_lengths = np.delete(region_length, index)
 remaining_regions = np.delete(regions, index)
 elif i>0:
 index = np.argmax(remaining_region_lengths)
 region_numbers.append(remaining_regions[index])
 remaining_region_lengths = np.delete(remaining_region_lengths, index)
 remaining_regions = np.delete(remaining_regions, index)

 return region_numbers, region_id_and_samples
 except:
 raise ValueError('No regions satisfying the condition found: all entries are False')

[docs]def pre_process_for_segmentation(call, fs, **kwargs):
 '''Performs a series of steps on a raw cf call before passing it for temporal segmentation
 into cf and fm.
 Step 1: find peak frequency
 Step 2: lowpass (fm_audio) and highpass (cf_audio) below
 a fixed percentage of the peak frequency
 Step 3: calculate the moving dB of the fm and cf audio

 Parameters

 call : np.array
 fs : int.
 Frequency of sampling in Hertz
 peak_percentage : 0<float<1, optional
 This is the fraction of the peak at which low and high-pass filtering happens.
 Defaults to 0.98.
 lowpass : optional
 Custom lowpass filtering coefficients. See low_and_highpass_around_threshold
 highpass :
 Custom highpass filtering coefficients. See low_and_highpass_around_threshold
 window_size : integer, optional
 The window size in samples over which the moving rms of the low+high passed signals will be calculated.
 For default value see documentation of moving_rms

 Returns

 cf_dbrms, fm_dbrms : np.arrays
 The dB rms profile of the high + low passed versions of the input audio.

 See Also

 itsfm.segment.low_and_highpass_around_threshold
 '''
 peak_percentage = kwargs.get('peak_percentage', 0.99)
 if peak_percentage >= 1.0:
 raise ValueError('Peak percentage is %f. It cannot be >=1 '%np.round(peak_percentage,2))
 make_sure_its_positive(peak_percentage, variable='peak percentage')

 peak_frequency, _ = get_peak_frequency(call, fs)

 fraction_of_nyquist = peak_frequency/(fs*0.5)
 if fraction_of_nyquist >= 0.75*(fs*0.5):
 print(warnings.warn('The peak frequency in the call is %f ... this might lead to erroneous output!'%fraction_of_nyquist))

 threshold_frequency = peak_frequency*peak_percentage
 fm_dominant_audio, cf_dominant_audio = low_and_highpass_around_threshold(call, fs, threshold_frequency, **kwargs)

 fm_rms = moving_rms_edge_robust(fm_dominant_audio, **kwargs)
 cf_rms = moving_rms_edge_robust(cf_dominant_audio, **kwargs)

 fm_dbrms, cf_dbrms = dB(fm_rms), dB(cf_rms)
 return cf_dbrms, fm_dbrms

[docs]def low_and_highpass_around_threshold(audio, fs, threshold_frequency, **kwargs):
 '''Make two version of an audio clip: the low pass and high pass versions.

 Parameters

 audio : np.array
 fs : float>0
 Frequency of sampling in Hz
 threshold_frequency : float>0
 The frequency at which the lowpass and highpass operations are
 be done.
 lowpass,highpass : ndarrays, optional
 The b & a polynomials of an IIR filter which define the
 lowpass and highpass filters.
 Defaults to a second order elliptical filter with rp of 3dB
 and rs of 10 dB. See signal.ellip for more details of rp and
 rs.
 pad_duration : float>0, optional
 Zero-padding duration in seconds before low+high pass filtering.
 Defaults to 0.1 seconds.
 double_pass: bool, optional
 Low/high pass filter the audio twice. This has been noticed to help
 with segmentation accuracy, especially for calls with short CF/FM
 segments where edge effects are particularly noticeable. Defaults to
 False

 Returns

 lp_audio, hp_audio : np.arrays
 The low and high pass filtered versions of the input audio.
 '''
 lowpass = kwargs.get('lowpass', signal.ellip(2,3,10, threshold_frequency/(0.5*fs), 'lowpass'))
 highpass = kwargs.get('highpass', signal.ellip(2,3,10, threshold_frequency/(0.5*fs), 'highpass'))
 double_pass = kwargs.get('double_pass', False)

 pad_duration = kwargs.get('pad_duration', 0.1)
 make_sure_its_positive(pad_duration, variable='pad_duration')
 pad_length = int(pad_duration*fs)

 audio_padded = np.pad(audio, [pad_length]*2, mode='constant', constant_values=(0,0))

 lp_audio_raw = signal.filtfilt(lowpass[0], lowpass[1], audio_padded)
 hp_audio_raw = signal.filtfilt(highpass[0], highpass[1], audio_padded)

 if double_pass:
 kwargs['double_pass'] = False
 # the double passed lp and hp versions of the audio segment
 lp_audio_raw , _ = low_and_highpass_around_threshold(lp_audio_raw, fs, threshold_frequency, **kwargs)
 _, hp_audio_raw = low_and_highpass_around_threshold(hp_audio_raw, fs, threshold_frequency, **kwargs)

 lp_audio = lp_audio_raw[pad_length:-pad_length]
 hp_audio = hp_audio_raw[pad_length:-pad_length]

 return lp_audio, hp_audio

[docs]def get_thresholds_re_max(cf_dbrms, fm_dbrms):
 '''
 '''
 fm_threshold = np.arange(-10,0)
 cf_threshold = np.arange(-10,0)
 fm_db_re_max = fm_dbrms - np.max(fm_dbrms)
 cf_db_re_max = cf_dbrms - np.max(cf_dbrms)

 fm_cf_duration = []
 fm_and_cf_thresholds = []
 num_shared_fm_cf_samples = []
 for each_fm in fm_threshold:
 for each_cf in cf_threshold:
 fm_and_cf_thresholds.append((each_fm, each_cf))
 fm_samples = fm_db_re_max >= each_fm
 cf_samples = cf_db_re_max >= each_cf

 common_fmcf_samples = np.sum(np.logical_and(cf_samples, fm_samples))
 num_shared_fm_cf_samples.append(common_fmcf_samples)

 cf_and_fm_samples = np.sum(cf_samples)*np.sum(fm_samples)
 fm_cf_duration.append(cf_and_fm_samples)

 # choose the parameter region that will allow the best compromise between number of common fm_cf samples
 # and the longest fm_cf durations.
 optimisation_metric = np.array(num_shared_fm_cf_samples)/np.array(cf_and_fm_samples)
 best_index = np.argmin(optimisation_metric)
 best_threshold = fm_and_cf_thresholds[best_index]

 return num_shared_fm_cf_samples, optimisation_metric, best_threshold

def instantaneous_frequency_profile(audio, fs, **kwargs):
 hil = signal.hilbert(audio)
 instantaneous_phase = np.unwrap(np.angle(hil))
 instantaneous_frequency = (np.diff(instantaneous_phase)/(2.0*np.pi)) * fs
 instant_frequency_resized = resize_by_adding_one_sample(instantaneous_frequency, audio, **kwargs)
 return instant_frequency_resized

def resize_by_adding_one_sample(input_signal, original_signal, **kwargs):
 '''Resizes the input_signal to the same size as the original signal by repeating one
 sample value. The sample value can either the last or the first sample of the input_signal.
 '''
 check_signal_sizes(input_signal, original_signal)

 repeat_start = kwargs.get('repeat_start', True)

 if repeat_start:
 return np.concatenate((np.array([input_signal[0]]), input_signal))
 else:
 return np.concatenate((input_signal, np.array([input_signal[-1]])))

def check_signal_sizes(input_signal, original_signal):
 if int(input_signal.size) >= int(original_signal.size):
 msg1 = 'The input signal"s size %d'%int(input_signal.size)
 msg2 = ' is greater or equal to the original signal"s size: %d'%(int(original_signal.size))
 raise ValueError(msg1+msg2)

 if int(original_signal.size) - int(input_signal.size) >= 2:
 raise ValueError('The original signal is >= 2 samples longer than the input signal.')

def instantaneous_frequency_profile(audio, fs, **kwargs):
 hil = signal.hilbert(audio)
 instantaneous_phase = np.unwrap(np.angle(hil))
 instantaneous_frequency = (np.diff(instantaneous_phase)/(2.0*np.pi)) * fs
 instant_frequency_resized = resize_by_adding_one_sample(instantaneous_frequency, audio, **kwargs)
 return instant_frequency_resized

[docs]def calc_proper_kernel_size(durn, fs):
 '''scipy.signal.medfilt requires an odd number of samples as
 kernel_size. This function calculates the number of samples
 for a given duration which is odd and is close to the
 required duration.

 Parameters

 durn : float
 Duration in seconds.
 fs : float
 Sampling rate in Hz

 Returns

 samples : int
 Number of odd samples that is equal to or little
 less (by one sample) than the input duration.
 '''
 samples = int(durn*fs)
 if np.remainder(samples,2)==0:
 samples -= 1
 if samples < 3:
 msg_part1 = 'The given kernel length of %3f seconds and sampling rate of'%durn
 msg_part2 = ' %f leads to a kernel of < 3 samples length. Increase kernel length!'%fs
 raise ValueError(msg_part1+msg_part2)
 return samples

[docs]def resize_by_adding_one_sample(input_signal, original_signal, **kwargs):
 '''Resizes the input_signal to the same size as the original signal by repeating one
 sample value. The sample value can either the last or the first sample of the input_signal.
 '''
 check_signal_sizes(input_signal, original_signal)

 repeat_start = kwargs.get('repeat_start', True)

 if repeat_start:
 return np.concatenate((np.array([input_signal[0]]), input_signal))
 else:
 return np.concatenate((input_signal, np.array([input_signal[-1]])))

def check_signal_sizes(input_signal, original_signal):
 if int(input_signal.size) >= int(original_signal.size):
 msg1 = 'The input signal"s size %d'%int(input_signal.size)
 msg2 = ' is greater or equal to the original signal"s size: %d'%(int(original_signal.size))
 raise ValueError(msg1+msg2)

 if int(original_signal.size) - int(input_signal.size) >= 2:
 raise ValueError('The original signal is >= 2 samples longer than the input signal.')

[docs]def median_filter(input_signal, fs, **kwargs):
 '''Median filters a signal according to a user-settable
 window size.

 Parameters

 input_signal : np.array
 fs : float
 Sampling rate in Hz.
 medianfilter_size : float, optional
 The window size in seconds. Defaults to 0.001 seconds.

 Returns

 med_filtered : np.array
 Median filtered version of the input_signal.
 '''
 window_duration = kwargs.get('medianfilter_size',
 0.001)
 kernel_size = calc_proper_kernel_size(window_duration, fs)
 med_filtered = signal.medfilt(input_signal, kernel_size)
 return med_filtered

[docs]def identify_cf_ish_regions(frequency_profile, fs, **kwargs):
 '''Identifies CF regions by comparing the rate of frequency modulation
 across the signal. If the frequency modulation within a region of
 the signal is less than the limit then it is considered a CF region.

 Parameters

 frequency_profile : np.array
 The instantaneous frequency of the signal over time in Hz.
 fm_limit : float, optional
 The maximum rate of frequency modulation in Hz/s.
 Defaults to 1000 Hz/s
 medianfilter_size : float, optional

 Returns

 cfish_regions : np.array
 Boolean array where True indicates a low FM rate region.
 The output may still need to be cleaned before final use.
 clean_fmrate_resized

 Notes

 If you're used to reading FM modulation rates in kHz/ms then just
 follow this relation to get the required modulation rate in Hz/s:

 X kHz/ms = (X Hz/s)* 10^-6

 OR

 X Hz/s = (X kHz/ms) * 10^6

 See Also

 median_filter
 '''
 max_modulation = kwargs.get('fm_limit', 10000) # Hz/sec
 fm_rate = np.diff(frequency_profile)

 #convert from Hz/sec to Hz/msec
 fm_rate_hz_sec = fm_rate/(1.0/fs)

 clean_fmrate = median_filter(fm_rate_hz_sec, fs, **kwargs)
 clean_fmrate_resized = resize_by_adding_one_sample(clean_fmrate, frequency_profile, **kwargs)

 cfish_regions = np.abs(clean_fmrate_resized)<= max_modulation
 return cfish_regions, clean_fmrate_resized

[docs]def segment_cf_regions(audio, fs, **kwargs):
 '''
 '''
 freq_profile_raw = instantaneous_frequency_profile(audio,fs, **kwargs)
 freq_profile_clean = median_filter(freq_profile_raw, fs, **kwargs)
 cf_region, fmrate_hz_per_msec = identify_cf_ish_regions(freq_profile_clean, fs, **kwargs)
 return cf_region, fmrate_hz_per_msec

[docs]class CFIdentificationError(ValueError):
 pass

[docs]class IncorrectThreshold(ValueError):
 pass

 Source code for itsfm.signal_cleaning

-*- coding: utf-8 -*-
"""
This module handles the identification and cleaning of noise in signals. A 'noisy' signal
is one that has spikes in it or sudden variations in a continuous looking
function. Most of these functions are built to detect and handle sudden
spikes in the frequency profile estimates of a sound.

"""
import numpy as np
from scipy import ndimage, stats
from itsfm.signal_processing import moving_rms_edge_robust
from itsfm.signal_processing import median_filter, resize_by_adding_one_sample
from itsfm.signal_processing import dB
from itsfm.sanity_checks import make_sure_its_positive

[docs]def exterpolate_over_anomalies(X, fs, anomalous, **kwargs):
 '''
 Ex(tra)+(in)ter-polates --> Exterpolates over anomalous regions. Anomalous
 regions are either 'edge' or 'island' types. The 'edge' anomalies are those which are
 at the extreme ends of the signal. The 'island' anomalies are regions with
 non-anomalous regions on the left and right.

 An 'edge' anomalous region is handled by running a linear regression on the
 neighbouring non-anomalous region, and using the slope to extrapolate over
 the edge anomaly.

 An 'island' anomaly is handled by interpolating between the end values of the
 neighbouring non-anomalous regions.

 Parameters

 X : np.array
 fs : float>0
 Sampling rate in Hz
 anomalous : np.array
 Boolean array of same size as X
 True indicates an anomalous sample.
 extrap_window : float>0, optional
 The duration of the extrapolation window in seconds.
 Defaults to 0.1ms

 Returns

 smooth_X : np.array
 Same size as X, with the anomalous regions

 Notes

 Only extrapolation by linear regression is supported currently. The `extrap_window`
 parameter is important especially if there is a high rate of frequency modulation
 towards the edges of the sound. When there is a high freq. mod. at the edges it
 is better to set the `extrap_window` small. However, setting it too small also
 means that the extrapolation may not be as nice anymore.

 Example

 `not up to date!!!`

 See Also

 find_closest_normal_region

 '''
 smooth_X = X.copy()
 extrap_window = kwargs.get('extrap_window', 0.1*10**-3)
 ref_region_length = int(extrap_window*fs)
 try:
 anomalous_broader = ndimage.filters.percentile_filter(anomalous, 100,
 ref_region_length)
 except:
 raise ValueError(f"Unable to percentile filter with kernel size {ref_region_length} and sampling rate {fs}")

 anomalous_labelled, num_regions = ndimage.label(anomalous_broader)
 if num_regions == 0:
 return smooth_X

 anomalous_regions = ndimage.find_objects(anomalous_labelled)

 for each_region in anomalous_regions:
 region_type = anomaly_type(each_region, X)
 if region_type == 'edge':
 smooth_X[each_region] = anomaly_extrapolation(each_region, X,
 ref_region_length)
 elif region_type == 'island':
 smooth_X[each_region] = fix_island_anomaly(X, fs, each_region,
 ref_region_length,
 **kwargs)
 return smooth_X

[docs]def fix_island_anomaly(X, fs, anomaly, ref_region_length, **kwargs):
 '''
 First tries to interpolate between the edges of the anomaly at hand.
 If the interpolation leads to a very drastic slope, a 'sensible' extrapolation
 is attempted using parts of the non-anomalous signal.

 Parameters

 X : np.array
 fs : float>0
 anomaly : tuple slice
 scipy.ndimage.find_objects output
 (slice(start,stop,None),)
 ref_region_length : int>0
 The number of samples to be used as a reference region in
 case of extrapolation
 max_fmrate : float>0, optional
 The maximum fm rate to be tolerated while interpolating in kHz/ms
 Defaults to 100 kHz/ms.

 Returns

 interpolated : np.array
 Array of same size as anomaly.
 '''
 max_fmrate = kwargs.get('max_fmrate', 100)
 trial_fix = anomaly_interpolation(anomaly, X)
 fmrate_trialfix = calc_coarse_fmrate(trial_fix, fs)
 if fmrate_trialfix <= max_fmrate:
 return trial_fix
 else:
 return extrapolate_sensibly(X, fs, anomaly, ref_region_length, **kwargs)

[docs]def extrapolate_sensibly(X, fs, anomaly, ref_region_length, **kwargs):
 '''
 Function called when `fix_island_anomaly` detects direct interpolation
 will lead to unrealistic slopes. This function is called when there's
 a big difference in values across an anomalous region and an
 extrapolation must be performed which will not alter the signal drastically.

 The method tries out the following:
 #. Look left and right of the anomaly to see which region
 has higher frequency content.
 #. Extrapolate in the high-to-low frequency direction.

 This basically means that if the local inspection window around anomaly has
 a sweep between 20-10kHZ on the left and a 0Hz region on the right - the
 anomaly will be extrapolated with the slope from the sweep region because it
 has higher frequency content.

 Example

 >>> freq_profile = [np.zeros(10), np.arange(15,30,5)*1000]
 >>> fs = 1.0
 >>> x = np.concatenate(freq_profile)[::-1]
 >>> anom = (slice(2, 5, None),)
 >>>
 >>> plt.plot(x, label='noisy frequency profile')
 >>> anom_x = np.zeros(x.size, dtype='bool')
 >>> anom_x[anom[0]] = True
 >>> plt.plot(anom_x*8000, label='identified anomaly')
 >>> extrap_out = extrapolate_sensibly(x, fs, anom, 4)
 >>> sensibly_extrap = x.copy()
 >>> sensibly_extrap[anom_x] = extrap_out
 >>> plt.plot(sensibly_extrap, label='extrapolated')
 >>> plt.legend()
 '''

 left_and_right_of_X = get_neighbouring_regions(X, anomaly, ref_region_length)
 left_median, right_median = map(np.median, left_and_right_of_X)

 start, stop = anomaly[0].start, anomaly[0].stop
 anom_size = stop-start
 if left_median > right_median:
 relevant_region = anomaly
 extrap_chunk = anomaly_extrapolation(relevant_region, X[:stop],
 ref_region_length,
 **kwargs)

 else:
 relevant_region = (slice(0,anom_size,None),)
 extrap_chunk = anomaly_extrapolation(relevant_region,
 X[start:],
 ref_region_length, **kwargs)

 return extrap_chunk

[docs]def get_neighbouring_regions(X, target, region_size):
 '''
 Takes out samples of `region_size` on either size of the target.

 Parameters

 X: np.array
 target : slice
 ndimage.find_objects type slice
 region_size : int >0

 Returns

 left_and_right : list
 '''
 start = target[0].start
 stop = target[0].stop

 before_start = start-region_size
 if before_start < 0 :
 left_of_X = X[:start]
 else:
 left_of_X = X[before_start:start]

 try:
 right_of_X = X[stop:stop+region_size]
 except:
 right_of_X = X[stop:]
 return [left_of_X, right_of_X]

[docs]def calc_coarse_fmrate(X,fs,**kwargs):
 '''
 Calculates slope by subtracting the difference between 1st and
 last sample and dividing it by the length of the array.
 The output is then converted to units of kHz/ms.

 Parameters

 X : np.array
 Frequency profile with values in Hz.
 fs : float>0

 '''
 diff = X[-1] - X[0]
 length = X.size/fs
 return np.abs((diff/length)*10**-6)

[docs]def anomaly_extrapolation(region, X, num_samples, **kwargs):
 '''
 Takes X values next to the region and fits a linear regression
 into the region. This is only suitable for cases where the
 anomalous region is at an 'edge' - either one of its samples
 is 0 or the last sample of X.

 Parameters

 region : object tuple
 A slice type object which is the output from scipy.ndimage.find_objects
 This is a slice inside a list/tuple.
 X : np.array
 The original array over which the extrapolation is to be performed
 num_samples : int>0
 The number of samples next to the region to be used to fit the data
 for extrapolation into the region.

 Returns

 extrapolated : np.array
 The values corresponding to the extrapolated region.

 Notes

 1. This function covers 90% of cases...if there is an anomaly right next
 to an edge anomaly with <num_samples distance -- of course things will
 go whack.

 Warning

 A mod on this function also allows extrapolation to occur if there
 are < num_samples next to the anomaly - this might make the function
 a bit lax in terms of the extrapolations it produces.

 '''
 start, stop = region[0].start, region[0].stop
 x = np.arange(start,stop)
 if start == 0:
 try:
 ref_x = range(stop, stop+num_samples)
 ref_values = X[ref_x]
 except:
 ref_x = range(stop, X.size)
 ref_values = X[stop:]

 elif stop==X.size:
 try:
 if start-num_samples <0:
 raise ValueError()
 else:
 ref_x = range(start-num_samples, start)
 ref_values = X[ref_x]
 except:
 ref_x = range(start)
 ref_values = X[ref_x]
 else:
 print(start, stop, x, 'anomaly x', X.size)
 raise NotImplementedError('the handling of none-edge case is not yet doen')
 m, c,rv, pv, stderr = stats.linregress(ref_x, ref_values)
 extrapolated = m*x + c
 return extrapolated

[docs]def anomaly_interpolation(region, X, **kwargs):
 '''
 Interpolates X values using values of X adjacent to the
 region.

 Parameters

 region : object tuple
 Output from scipy.ndimage.find_objects
 X : np.array

 Returns

 full_span : np.array
 The values of interpolated X, of same size as the
 region length.
 '''
 start, stop = region[0].start, region[0].stop
 left_point = start-1
 full_span = np.linspace(X[left_point],X[stop],stop-left_point+1)
 return full_span[1:-1]

def anomaly_type(region, X):
 start, stop = region[0].start, region[0].stop

 at_left_edge = start==0
 at_right_edge = stop==X.size

 if np.logical_and(at_left_edge, at_right_edge):
 raise ValueError('The anomaly spans the whole array - please check again')
 at_either_edge = np.logical_or(at_left_edge, at_right_edge)

 if at_either_edge:
 return 'edge'
 else:
 return 'island'

[docs]def smooth_over_potholes(X, fs, **kwargs):
 '''
 A signal can show drastic changes in its value because of measurement errors.
 These drastic variations in signal are called `potholes <https://en.wikipedia.org/wiki/Pothole>`_
 (uneven parts of a road). This method tries to 'level' out the pothole by re-setting the samples of the
 pothole. A linear interpolation is done from the start of a pothole till its end using the closest
 non-pothole samples.

 A pothole is identified by a region of the signal with drastic changes in slope. A moving window
 calculates N slopes between the focal sample and the Nth sample after it to estimate if
 the Nth sample could be part of a pothole or not.

 Parameters

 X : np.array
 fs : float>0
 max_stepsize : float>0, optional
 The maximum absolute difference between adjacent samples.
 Defaults to 50.
 pothole_inspection_window : float>0, optional
 The length of the moving window that's used to discover potholes.
 See identify_pothole_samples for default value.

 Returns

 pothole_covered
 pothole_regions

 See Also

 identify_pothole_samples
 pothole_inspection_window

 '''
 kwargs['max_stepsize'] = kwargs.get('max_stepsize', 50)
 potholes = identify_pothole_samples(X, fs, **kwargs)

 abnormal_fm, num_regions = ndimage.label(potholes)
 if num_regions < 1:
 return X, []
 else:
 pothole_covered = X.copy()
 pothole_regions = ndimage.find_objects(abnormal_fm)
 spikeish_indices = get_all_spikeish_indices(pothole_regions)
 for each_region in pothole_regions:
 region = each_region[0]
 start, stop = region.start, region.stop
 region_length = stop-start
 # find the sample values next to the start and stop

 next_to_start = find_non_forbidden_index(start, spikeish_indices, -1, X)
 next_to_stop = find_non_forbidden_index(stop, spikeish_indices, +1, X)
 interpolated_values = np.linspace(pothole_covered[next_to_start],
 pothole_covered[next_to_stop],
 region_length)
 pothole_covered[start:stop] = interpolated_values

 return pothole_covered, pothole_regions

[docs]def identify_pothole_samples(X, fs, **kwargs):
 '''Moves a sliding window and checks the values of samples in the sliding window.
 If the jump of values between samples is not linearly propotional to the
 expected max_stepsize, then it is labelled a pothole sample.

 A pothole sample is one which represents a sudden jump in the values - indicating
 a noisy tracking of the frequency. The jump in values in a non-noisy signal is expected
 to be proportional to the distance between the samples.

 For instance, if :

 >>> a = np.array([10, 2, 6, 10, 12])

 If the max step size is 2, then because abs(10-2)>2, it causes a pothole to appear on 2.
 There is no pothole label on the 2nd index because abs(10-6) is not >4. Because 10 and 6
 are two samples apart, the maximum allowed jump in value is max_stepsize*2, which is 4.

 For optimal pothole detection the 'look-ahead' span of the pothole_inspection_window
 should at least the size of the longest expected potholes. Smaller window sizes
 will lead to false negatives.

 Parameters

 X : np.array
 fs : float>0
 max_stepsize : float>0
 The max absolute difference between the values of one sample to the next.

 pothole_inspection_window : float>0, optional
 Defaults to 0.25ms

 Returns

 pothole_candidates : np.array
 Boolean array with same size as X. Sample that are True represent pothole candidates.

 See Also

 detect_local_potholes
 '''
 # forward pass
 left2right_pothole_candidates, _ = onepass_identify_potholes(X, fs,
 **kwargs)
 # backward pass
 right2left_pothole_candidates, _ = onepass_identify_potholes(X[::-1], fs,
 **kwargs)
 pothole_candidates = np.logical_and(left2right_pothole_candidates>0,
 right2left_pothole_candidates[::-1]>0)

 return pothole_candidates

[docs]def onepass_identify_potholes(X, fs, max_stepsize, **kwargs):
 '''
 '''
 window_duration = kwargs.get('pothole_inspection_window', 0.25*10**-3)
 window_size = int(fs*window_duration)
 potholes = []
 consensus = np.zeros(X.size)

 for i,each in enumerate(X):
 candidates = detect_local_potholes(X[i:i+window_size], max_stepsize)
 potholes.append(candidates)
 consensus[i+candidates] += 1
 return consensus, potholes

[docs]def detect_local_potholes(X, max_step_size):
 '''accepts a 1D array and checks the absolute difference between
 the first sample and all other samples.

 The samples with difference greater than the linearly expected increase
 from max_step_sizes are labelled candidate potholes.

 Parameters

 X : np.array
 max_step_size : float>=0

 Returns

 candidate_potholes : np.array
 Boolean array of same size as X
 '''
 pothole_depth = np.abs(X-X[0])
 max_allowed = np.arange(X.size)*max_step_size
 candidate_potholes = np.argwhere(pothole_depth > max_allowed).flatten()
 return candidate_potholes

[docs]def get_all_spikeish_indices(regions):
 '''
 '''
 indices = np.concatenate(list(map(extract_indices, regions)))
 return indices

[docs]def find_non_forbidden_index(candidate, forbidden_indices, search_direction, X):
 '''
 '''

 index_in_spike = candidate in forbidden_indices
 if index_in_spike:
 next_candidate = search_operation[search_direction](candidate)
 return find_non_forbidden_index(next_candidate, forbidden_indices, search_direction, X)
 else:
 candidate_index_within_array = np.logical_and(candidate>=0, candidate<=X.size-1)
 if candidate_index_within_array:
 return candidate
 else:
 search_direction *= -1
 next_candidate = search_operation[search_direction](candidate)
 return find_non_forbidden_index(next_candidate, forbidden_indices, search_direction, X)

def extract_indices(X):
 indices = np.arange(X[0].start, X[0].stop)
 return indices

search_operation = {-1: lambda X: X-1,
 1: lambda X : X+1}

[docs]def remove_bursts(X, fs, **kwargs):
 '''Bursts are brief but large jumps in the signal above zero. Even though they satisfy
 most of the other conditions of beginning above the noise floor and of
 being above 0 value, they still are too short to be relevant signals.

 Parameters

 X : np.array
 The noisy signal to be handled
 fs : float>0
 Sampling rate in Hz.
 min_element_length : float>0, optional
 The minimum length a section of the signal must be to be
 kept in seconds. Defaults to 5 inter-sample-intervals.

 Returns

 X_nonspikey : np.array
 Same size as X, and without very short segments.

 See Also

 segments_above_min_duration

 Notes

 An inter-sample-interval is defined as 1/fs

 '''
 inter_sample_durn = 1.0/fs
 min_element_length = kwargs.get('min_element_length', 5*inter_sample_durn) #to 5 samples
 min_element_samples = int(fs*min_element_length)

 if min_element_length <= inter_sample_durn:
 raise ValueError('Please set the min element length.\
 The current value of:%f is less than 1/sampling rate'%(min_element_length))
 min_element_samples = int(fs*min_element_length)

 non_spikey_regions = segments_above_min_duration(X>0, min_element_samples)

 X_nonspikey = np.zeros(X.size)
 X_nonspikey[non_spikey_regions] = X[non_spikey_regions]
 return X_nonspikey

[docs]def segments_above_min_duration(satisfies_condition, min_samples):
 '''Accepts a boolean array and looks for continuous chunks
 that are above a minimum length.

 Parameters

 satisfies_condition : np.array
 Boolean array where samples with True satisfy a condition.
 min_samples : int >0
 The minimum number of samples a continuous region of True
 must be to be kept.

 Returns

 above_min_duration : np.array
 Same size as satisfies_condition, with only the continuous
 chunks that are above min_samples.

 '''
 all_regions, number_regions = ndimage.label(satisfies_condition)
 region_stretches = ndimage.find_objects(all_regions)

 above_min_duration = np.tile(False, satisfies_condition.size)

 for each_stretch in region_stretches:
 if satisfies_condition[each_stretch].size > min_samples:
 above_min_duration[each_stretch] = True
 return above_min_duration

[docs]def suppress_background_noise(main_signal, input_audio, **kwargs):
 '''
 '''
 signal_level = kwargs.get('signal_level', -20) # dBrms
 signal_dBrms = dB(moving_rms_edge_robust(input_audio, **kwargs))
 bg_noise_suppressed = suppress_to_zero(main_signal, signal_dBrms,
 signal_level, 'below')
 return bg_noise_suppressed

[docs]def suppress_frequency_spikes(noisy_profile, input_audio, fs, **kwargs):
 '''
 '''
 max_spike_rate = kwargs.get('max_spike_rate', 3000) # Hz jump/sample

 # median filter to get rid of smaller fluctuations in the noisy profile *not*
 # caused by abrupt transitions in the edges.
 med_filtered = median_filter(noisy_profile, fs, **kwargs)

 raw_fmrate = abs(np.diff(med_filtered))
 delta_profile = resize_by_adding_one_sample(raw_fmrate, input_audio)
 spike_suppressed = suppress_to_zero(noisy_profile, delta_profile, max_spike_rate, 'above')
 return spike_suppressed

[docs]def suppress_to_zero(target_signal, basis_signal, threshold, mode='below'):
 '''
 Sets the values of the target signal to zero if the
 samples in the basis_signal are \geq or \leq the threshold

 Parameters

 target_signal, basis_signal : np.array
 threshold : float
 mode : ['below', 'above'], str

 Returns

 cleaned_signal : np.array
 A copy of the target signal with the values that are below/above the threshold
 set to zero

 Example

 # create a basis signal with a 'weak' left half and a 'loud' right hald
 # we want to suppress the we
 >>> basis = np.concatenate((np.arange(10), np.arange(100,200)))
 >>> target_signal = np.random.normal(0,1,basis.size)
 >>> cleaned_target = suppress_to_zero(basis, target_signal, 100, mode='above')
 '''
 if mode == 'below':
 to_suppress = basis_signal < threshold
 elif mode == 'above':
 to_suppress = basis_signal > threshold
 else:
 raise ValueError('Mode should be either "below" or "above" and not: %s'%(mode))
 cleaned_signal = np.copy(target_signal)
 cleaned_signal[to_suppress.flatten()] = 0
 return cleaned_signal

[docs]def clip_tfr(tfr, **kwargs):
 '''
 Parameters

 tfr : np.array
 2D array with the time-frequency representation of choice
 (pwvd, fft etc). The tfr must have real-valued non-negative
 values as the clip range is defined in dB.
 tfr_cliprange: float >0, optional
 The maximum dynamic range in dB which will be used to
 track the instantaneous frequency. Defaults to
 None. See `Notes` for more details

 Returns

 clipped_tfr : np.array
 A 2d array of same shape as `tfr`, with values
 clipped between [max, max x 10^(tfr_range/20)]
 Notes

 The `tfr_cliprange` is used to remove the presence of
 background noise, faint harmonics or revernberations/echoes
 in the audio. This of course all assumes that the main
 signal itself is sufficiently intense in the first place.

 After the PWVD time-frequency represenation is made,
 values below X dB of the maximum value are 'clipped' to
 the same minimum value. eg. if the pwvd had values of
 [0.1, 0.9, 0.3, 1, 0.001, 0.0006] and the tfr_cliprange is
 set to 6dB, then the output of the clipping will be
 [0.5, 0.9, 0.3, 1, 0.5, 0.5]. This step essentially eliminates
 any variation in the array, thus allowing a clear
 tracking of the highest component in it.
 '''
 tfr_cliprange = kwargs.get('tfr_cliprange')
 if tfr_cliprange is None:
 return tfr
 else:
 make_sure_its_positive(tfr_cliprange, variable='tfr_cliprange')
 max_value = np.max(tfr)
 clip_value = max_value*10**(-tfr_cliprange/20.0)

 clipped_tfr = tfr.copy()
 clipped_tfr[clipped_tfr<clip_value] = clip_value

 return clipped_tfr

[docs]def conditionally_set_to(X, conditional, bool_state):
 '''Inverts the samples in X where the conditional is True.
 Parameters

 X : np.array
 Boolean
 conditional : np.array
 Boolean
 bool_state : [True, False]

 Returns

 cond_set_X : np.array
 conditionally set X

 Notes

 this function is useful if you want to 'suppress' a few samples
 conditionally based ont he values of the same samples
 on another array.

 Example

 >>> x = np.array([True, True, False, False, True])
 >>> y = np.array([0,0,10,10,10])
 Imagine x is some kind of detection array, while y is the
 signal-to-noise ratio at each of the sample points. Of course,
 you'd like to discard all the predictions from low SNR measurements.
 Let's say you want to keep only those entries in X where y is >1.
 >>> x_cond = conditionally_set_to(x, y<10, False)
 >>> x_cond

 np.array([False, False, False, False, True])
 '''
 if sum(conditional)==0:
 return X
 else:
 cond_set_X = X.copy()
 cond_set_X[conditional] = bool_state
 return cond_set_X

 Source code for itsfm.signal_processing

-*- coding: utf-8 -*-
"""Module with signal processing functions in it
used by both measure and segment modules.

"""
from itsfm.sanity_checks import make_sure_its_negative
import numpy as np
import scipy.signal as signal

[docs]def dB(X):
 '''Calculates the 20log of X'''
 return 20*np.log10(X)

[docs]def rms(X):
 '''Root mean square of a signal '''
 return np.sqrt(np.mean(X**2.0))

[docs]def calc_energy(X):
 '''Sum of all squared samples '''
 return np.sum(X**2.0)

[docs]def get_power_spectrum(audio, fs=250000.0):
 '''Calculates an RFFT of the audio.
 Parameters

 audio : np.array
 fs : int
 Frequency of sampling in Hz

 Returns

 dB_power_spectrum : np.array
 dB(power_spectrum)
 freqs : np.array
 Centre frequencies of the RFFT.
 '''
 spectrum = np.fft.rfft(audio)
 freqs = np.fft.rfftfreq(audio.size, 1.0/fs)
 dB_power_spectrum = dB(abs(spectrum))
 return dB_power_spectrum, freqs

[docs]def calc_sound_borders(audio, percentile=99):
 '''Gives the start and stop of a sound based on the percentile
 cumulative energy values.

 Parameters

 audio : np.array
 percentile : float, optional
 Value between 100 and 0. The sound border is calcualted
 as the border which encapsulates the percentile of energy
 Defaults to 99.

 Returns

 start, end : int
 '''
 audio_sq = audio**2.0
 cum_energy = np.cumsum(audio_sq)
 outside_percentile = (100-percentile)*0.5
 lower, higher = outside_percentile, 100-outside_percentile
 start, end = np.percentile(cum_energy,[lower, higher])
 start_ind = np.argmin(abs(cum_energy-start))
 end_ind = np.argmin(abs(cum_energy-end))
 return start_ind, end_ind

[docs]def get_robust_peak_frequency(audio, **kwargs):
 '''Makes a spectrogram from the audio
 and calcualtes the peak frequency by averaging
 each slice of the spectrogram's FFT's.

 This 'smooths' out the structure of the power
 spectrum and allows a single and clear peak
 detection.

 Thanks to Holger Goerlitz for the suggestion.

 Parameters

 audio : np.array
 fs : float
 Frequency of sampling in Hz
 seg_length : int, optional
 The size of the FFt window used to calculate the moving FFT slices.
 DEfaults to 256
 noverlap : int, optional
 The number of samples overlapping between one FFT slice and the next.
 Defaults to seg_length -1

 Returns

 peak_frequency : float
 Frequency with highest power in the audio in Hz.
 '''
 seg_length = kwargs.get('seg_length',256)
 frequency,t,sxx = signal.spectrogram(audio, fs=int(kwargs['fs']), nperseg=seg_length, noverlap=seg_length-1)
 averaged_spectrogram = np.apply_along_axis(np.sum, 1, sxx)
 peak = np.argmax(averaged_spectrogram)
 peak_frequency = frequency[peak]
 return peak_frequency

[docs]def get_peak_frequency(audio, fs):
 '''Gives peak frequency and frequency resolution
 with which the measurement is made

 Parameters

 audio : np.array
 fs : float>0
 sampling rate in Hz

 Returns

 peak_freq, freq_resolution : float
 The peak frequency and frequency resolution of this
 peak frequency in Hz.
 '''
 spectrum = np.fft.rfft(audio)
 freqs = np.fft.rfftfreq(audio.size, 1.0/fs)
 freq_resolution = get_frequency_resolution(freqs, fs)
 peak_freq = freqs[np.argmax(spectrum)]
 return peak_freq, freq_resolution

[docs]def get_frequency_resolution(audio, fs):
 '''
 Parameters

 audio : np.array
 fs : float>0
 sampling rate in Hz

 Returns

 resolution : float
 The frequency resolution in Hz.
 '''
 resolution = float(fs/audio.size)
 return resolution

[docs]def moving_rms(X, **kwargs):
 '''Calculates moving rms of a signal with given window size.
 Outputs np.array of *same* size as X. The rms of the
 last few samples <= window_size away from the end are assigned
 to last full-window rms calculated

 Parameters

 X : np.array
 Signal of interest.

 window_size : int, optional
 Defaults to 125 samples.

 Returns

 all_rms : np.array
 Moving rms of the signal.
 '''
 window_size = kwargs.get('window_size', 125)
 starts = np.arange(0, X.size)
 stops = starts+window_size
 valid = stops<X.size
 valid_starts = np.int32(starts[valid])
 valid_stops = np.int32(stops[valid])
 all_rms = np.ones(X.size).reshape(-1,1)*999

 for i, (start, stop) in enumerate(zip(valid_starts, valid_stops)):
 rms_value = rms(X[start:stop])
 all_rms[i] = rms_value

 # replace all un-assigned samples with the last rms value
 all_rms[all_rms==999] = np.nan

 return all_rms

[docs]def moving_rms_edge_robust(X, **kwargs):
 '''Calculates moving rms of a signal with given window size.
 Outputs np.array of *same* size as X. This version is robust
 and doesn't suffer from edge effects as it calculates the
 moving rms in both forward and backward directions
 and calculates a consensus moving rms profile.

 The consensus rms profile is basically achieved by
 taking the left half of the forward rms profile
 and concatenating it with the right hald of the
 backward passed rms profile.

 Parameters

 X : np.array
 Signal of interest.

 window_size : int, optional
 Defaults to 125 samples.

 Returns

 all_rms : np.array
 Moving rms of the signal.

 Notes

 moving_rms_edge_robust may not be too accurate when the rms
 is expected to vary over short time scales in the centre of
 the signal!!
 '''

 forward_run = moving_rms(X, **kwargs)
 backward_run = moving_rms(np.flip(X), **kwargs)
 consensus = form_consensus_moving_rms(forward_run, backward_run)
 return consensus

[docs]def form_consensus_moving_rms(forward, backward):
 '''
 Parameters

 forward, backward : np.array
 Two arrays of the same dimensions.

 Compares and returns the consensus maximum value at each sample.
 '''
 consensus_rms = np.column_stack((forward, backward[::-1]))
 return np.nanmax(consensus_rms, 1)

[docs]def median_filter(input_signal, fs, **kwargs):
 '''Median filters a signal according to a user-settable
 window size.

 Parameters

 input_signal : np.array
 fs : float
 Sampling rate in Hz.
 medianfilter_size : float, optional
 The window size in seconds. Defaults to 0.001 seconds.

 Returns

 med_filtered : np.array
 Median filtered version of the input_signal.
 '''
 window_duration = kwargs.get('medianfilter_size',
 0.001)
 kernel_size = calc_proper_kernel_size(window_duration, fs)
 med_filtered = signal.medfilt(input_signal, kernel_size)
 return med_filtered

[docs]def calc_proper_kernel_size(durn, fs):
 '''scipy.signal.medfilt requires an odd number of samples as
 kernel_size. This function calculates the number of samples
 for a given duration which is odd and is close to the
 required duration.

 Parameters

 durn : float
 Duration in seconds.
 fs : float
 Sampling rate in Hz

 Returns

 samples : int
 Number of odd samples that is equal to or little
 less (by one sample) than the input duration.
 '''
 samples = int(durn*fs)
 if np.remainder(samples,2)==0:
 samples -= 1
 return samples

[docs]def resize_by_adding_one_sample(input_signal, original_signal, **kwargs):
 '''Resizes the input_signal to the same size as the original signal by repeating one
 sample value. The sample value can either the last or the first sample of the input_signal.
 '''
 check_signal_sizes(input_signal, original_signal)

 repeat_start = kwargs.get('repeat_start', True)

 if repeat_start:
 return np.concatenate((np.array([input_signal[0]]), input_signal))
 else:
 return np.concatenate((input_signal, np.array([input_signal[-1]])))

def check_signal_sizes(input_signal, original_signal):
 if int(input_signal.size) >= int(original_signal.size):
 msg1 = 'The input signal"s size %d'%int(input_signal.size)
 msg2 = ' is greater or equal to the original signal"s size: %d'%(int(original_signal.size))
 raise ValueError(msg1+msg2)

 if int(original_signal.size) - int(input_signal.size) >= 2:
 raise ValueError('The original signal is >= 2 samples longer than the input signal.')

[docs]def get_terminal_frequency(audio, fs, **kwargs):
 '''Gives the -XdB frequency from the peak.

 The power spectrum is calculated and smoothened over 3 frequency bands to remove
 complex comb-like structures.

 Then the lowest frequency below XdB from the peak is returned.

 Parameters

 audio : np.array
 fs : float>0
 Sampling rate in Hz
 terminal_frequency_threshold : float, optional
 The terminal frequency is calculated based on finding the level of the peak frequency
 and choosing the lowest frequency which is -10 dB (20log10) below the peak level.
 Defaults to -10 dB

 Returns

 terminal_frequency
 threshold

 Notes

 Careful about setting threshold too low - it might lead to output of terminal
 frequencies that are actually in the noise, and not part of the signal itself.
 '''
 threshold = kwargs.get('terminal_frequency_threshold', -10)
 make_sure_its_negative(threshold, variable='terminal frequency threshold')

 power_spectrum, freqs = get_power_spectrum(audio, fs)
 # smooth the power spectrum over 3 frequency bands to remove 'comb'-iness in the spectrum
 smooth_spectrum = np.convolve(10**(power_spectrum/20.0), np.ones(3)/3,'same')
 smooth_power_spectrum = dB(abs(smooth_spectrum))

 peak = np.max(smooth_power_spectrum)
 geq_threshold = smooth_power_spectrum >= peak + threshold
 all_frequencies_above_threshold = freqs[geq_threshold]

 terminal_frequency = np.min(all_frequencies_above_threshold)
 return terminal_frequency, threshold

 Source code for itsfm.user_interface

-*- coding: utf-8 -*-
"""User-friendly top-level functions which allow the user to handle

#. Call-background segmentation
#. CF-FM call part segmentation
#. Measurement of CF-FM audio parts

Let's take a look at an example where we [TO BE COMPLETED!!!]

.. code-block:: python

 import scipy.signal as signal
 from itsfm.user_interface import segment_and_measure_call
 from itsfm.view_horseshoebat_call import *
 from itsfm.simulate_calls import make_cffm_call

 # create synthetic call
 call_parameters = {'cf':(100000, 0.01),
 'upfm':(80000, 0.002),
 'downfm':(60000, 0.003),
 }

 fs = 500*10**3 # 500kHz sampling rate
 synthetic_call, freq_profile = make_cffm_call(call_parameters, fs)

 # window and reduce overall signal level
 synthetic_call *= signal.tukey(synthetic_call.size, 0.1)
 synthetic_call *= 0.75

 # measuring a well-selected call (without silent background)

 # measuing a call with a silent background

 # and add 2ms of additional background_noise of ~ -60dBrms
 samples_1ms = int(fs*0.001)
 final_size = synthetic_call.size + samples_1ms*2
 call_with_noise = np.random.normal(0,10**(-60/20.0),final_size)
 call_with_noise[samples_1ms:-samples_1ms] += synthetic_call

 #

 seg_and_msmts = segment_and_measure_call(call_with_noise, fs,
 segment_from_background=True)
 call_segmentation, call_parts, measurements, backg_segment = seg_and_msmts

"""

import matplotlib
import matplotlib.pyplot as plt
import matplotlib.backends.backend_pdf
import itsfm.segment
from itsfm.segment import segment_call_from_background
from itsfm.segment import segment_call_into_cf_fm
from itsfm.measure import measure_hbc_call
from itsfm.measure import parse_cffm_segments

[docs]def segment_and_measure_call(main_call, fs,
 segment_from_background=False,
 **kwargs):
 '''Segments the CF and FM parts of a call and then
 proceeds to measure their characteristics. If required,
 also segments call from background.

 Parameters

 main_call : np.array
 fs : float>0
 sampling rate in Hz
 segment_from_background : boolean
 Whether to segment the call in the main_call audio.
 Defaults to False.

 Keyword Arguments

 For further keyword arguments see segment_call_from_background,
 segment_call_into_cf_fm and measure_hbc_call

 Returns

 segmentation_outputs : tuple
 The outputs of segment_call_into_cf_fm in a tuple
 call_parts_audio : dictionary
 Dictionary with numbered entries. If a sound has the following
 order of Cf and FM: FM-CF-FM, then the keys will be
 'fm1','cf1','fm2'. The numbering is according to the chronological
 order.
 measurements : pd.DataFrame
 All the measurements from the FM and CF parts.

 Example

 Let's simulate a call to demonstrate how the measurement+segmentation
 works.

 >>> import scipy.signal as signal
 >>> from itsfm.simulate_calls import make_cffm_call
 >>> call_properties = {'cf':(80000, 0.01), 'upfm':(70000, 0.002),
 'downfm':(50000, 0.002)}
 >>> fs = 500000
 >>> call, profile = make_cffm_call(call_properties, fs)
 >>> call *= signal.tukey(call.size, 0.1)
 >>> plt.figure()
 >>> plot1 = plt.subplot(211)
 >>> plt.plot(profile)
 >>> #segment the CF and FM parts with the default 'peak percentage' method.
 >>> segm_out, call_parts, measures, _ = segment_and_measure_call(call,
 fs,
 segment_method='peak_percentage',
 peak_percentage=0.999,
 window_size=int(fs*0.5*10**-3))
 >>> print(measures)

 Now segment with frequency tracking implemented with the Pseudo Wigner Ville
 Distribution, and the set the fmrate threshold to 10 kHz/ms

 >>> segm_out, call_parts, measures, _ = segment_and_measure_call(call,
 fs,
 segment_method='pwvd',
 fmrate_threshold=10,
 medianfilter_length=0.5*10**-3,
)
 >>> plt.subplot(212, sharex=plot1)
 >>> plt.plot(segm_out[-1]['fmrate'])
 >>> print(measures)

 See Also

 itsfm.measure

 '''
 cf, fm, info = segment_call_into_cf_fm(main_call, fs,
 **kwargs)

 measurements = measure_hbc_call(main_call, fs, cf, fm,
 **kwargs)
 call_segments = parse_cffm_segments(cf,fm)

 call_parts_audio = {}
 for (part_name, location) in call_segments:
 call_parts_audio[part_name] = main_call[location]

 return (cf, fm, info), call_parts_audio, measurements

[docs]def save_overview_graphs(all_subplots, analysis_name, file_name, index,
 **kwargs):
 '''Saves overview graphs.

 Parameters

 all_subplots : list
 List with plt.subplot objects in them.
 For each figure to be saved, one subplot object is enough.
 analysis_name : str
 The name of the analysis. If this funciton is called
 through a batchfile, then it becomes the name of the
 batchfile
 file_name : str
 index : int, optional
 A numeric identifier for each graph. This is especially relevant
 for analyses driven by batch files as there may be cases where the
 calls are selected from the same audio file but in different parts.

 Returns

 None

 Notes

 This function has the main side effect of saving all the input figures
 into a pdf file with >1 pages (one page per plot) for the user to inspect
 the results.

 Example

 import numpy as np

 # 1st plot
 plt.figure()
 a = plt.subplot(211)
 plt.plot([1,2,3])
 b = plt.subplot(212)
 plt.plot([5,4,3])

 #2nd plot
 plt.figure()
 c = plt.subplot(121)
 plt.plot(np.random.normal(0,1,100))
 d = plt.subplot(122)
 plt.plot(np.random.normal(0,1,10))

 save_overview_graphs([a,c], 'example_plots', 'example_file',0)
 '''

 final_file_name = analysis_name+'_'+file_name+'_'+str(index)

 # thanks to J0e3gan : https://stackoverflow.com/a/17788764
 pdf = matplotlib.backends.backend_pdf.PdfPages(final_file_name+".pdf")

 for one_subplot in all_subplots:
 pdf.savefig(one_subplot.figure)
 pdf.close()

 Source code for itsfm.view

-*- coding: utf-8 -*-
"""Bunch of functions which help in visualising data
and results

There is a common pattern in the naming of viewing functions.

 #. functions starting with 'visualise' include an overlay of
 a particular output attribute on top of or with the
 the original signal. For example `visualise_sound`
 #. functions starting with 'plot' are bare bones
 plots with just the attribute on the y and time on the x.
"""
import matplotlib.pyplot as plt
import numpy as np

from itsfm.signal_processing import get_peak_frequency
from itsfm.signal_processing import moving_rms_edge_robust, dB
from itsfm.frequency_tracking import accelaration, speed
make_x_time = lambda X, fs: np.linspace(0, X.size/float(fs), X.size)

[docs]class itsFMInspector:
 '''
 Handles the output from measure_and_segment calls, and allows plotting
 of the outputs.

 Parameters

 segmeasure_out : tuple
 Tuple object containing three other objects which are the output from segment_and_measure_call
 1. segmentation_output : tuple
 Tuple with the `cf` boolean array, `fm` boolean array and `info` dictioanry
 2. audio_parts : dictionary
 Dictionary with call part labels and values as selected audio parts as np.arrays
 3. measurements : pd.DataFrame
 A wide-formate dataframe with one row referring to meaurements done on one call part
 eg. if a call has 3 parts (fm1, cf1, fm2), then there will be three columns and
 N columns, if N measurements have been done.

 whole_audio : np.array
 The audio that was analysed.

 fs : float>0
 Sampling rate in Hz.

 Notes

 * Not all `visualise` methods may be supported. It depends on the segmentation method at hand.
 * All `visualise` methods return one/multiple subplots that could be used and embellished further
 for your own custom laying over.

 '''
 def __init__(self, segmeasure_out, whole_audio, fs, **kwargs):
 self.seg_details, self.audio_parts, self.measurements = segmeasure_out
 self.whole_audio = whole_audio
 self.fs = fs
 self.kwargs = kwargs
 self.cf, self.fm, self.info = self.seg_details

 def visualise_audio(self):
 w, s = visualise_sound(self.whole_audio, self.fs, **self.kwargs)
 return w,s

[docs] def visualise_fmrate(self):
 '''
 Plots the spectrogram + FM rate profile in a 2 row plot
 '''
 try:
 self.fmrate = self.info['fmrate']
 plt.figure()
 a = plt.subplot(311)
 make_waveform(self.fmrate, self.fs)
 plt.ylabel('FM rate, kHz/ms')
 b = plt.subplot(312,sharex=a)
 make_specgram(self.whole_audio, self.fs, **self.kwargs)
 b.set_ylabel('Frequency, Hz', labelpad=-1.5)
 c = plt.subplot(313,sharex=a)
 make_waveform(self.whole_audio, self.fs)
 return a, b, c
 except:
 raise AttributeError('Cannot make fmrate plot. Check if variable found in the output!')

[docs] def visualise_accelaration(self):
 '''
 Plots the spectrogram + accelaration of the
 frequency profile
 in a 2 row plot
 '''
 try:
 self.acc_profile = self.info['acc_profile']

 plt.figure()
 a = plt.subplot(311)
 make_waveform(self.acc_profile, self.fs)
 plt.ylabel('Accelaration, kHz/ms^{2}')
 b = plt.subplot(312, sharex=a)
 make_specgram(self.whole_audio, self.fs, **self.kwargs)
 c = plt.subplot(313, sharex=a)
 make_waveform(self.whole_audio, self.fs)
 return a, b, c
 except:
 raise AttributeError('Cannot make accelaration profile plot')

[docs] def visualise_cffm_segmentation(self):
 '''
 '''
 w,s = visualise_cffm_segmentation(self.cf, self.fm,
 self.whole_audio, self.fs,
 **self.kwargs)
 return w,s

[docs] def visualise_frequency_profiles(self, fp_type='all'):
 '''
 Visualises either one or all of the frequency profiles that are present in the
 info dictionary.
 The function relies on picking up all keys in the info dictionary that end with '<>_fp'
 pattern.

 Parameters

 fp_type : str/list with str's
 Needs to correspond to a key found in the info dictionary
 '''
 if fp_type=='all':
 all_fps = self._get_fp_keys(self.info)
 elif isinstance(fp_type, str):
 all_fps = [fp_type]

 plt.figure()
 a = plt.subplot(211)
 make_specgram(self.whole_audio, self.fs, **self.kwargs);
 time_axis = make_x_time(self.whole_audio, self.fs)
 for each_fp in all_fps:
 plt.plot(time_axis, self.info[each_fp], label=each_fp)
 plt.legend()
 b = plt.subplot(212, sharex=a)
 make_waveform(self.whole_audio, self.fs,)
 return a,b

[docs] def visualise_pkpctage_profiles(self):
 '''
 '''
 plt.figure()
 a = plt.subplot(211)
 make_specgram(self.whole_audio, self.fs, **self.kwargs);
 a.set_ylabel('Frequency, Hz', labelpad=-1.5)
 b = plt.subplot(212, sharex=a)
 plot_dbrms_cffmprofiles(self.seg_details,self.fs)
 return a,b

[docs] def visualise_geq_signallevel(self):
 '''
 Some tracking/segmentation methods rely on using only
 regions that are above a threshold, the `signal_level`
 . A moving dB rms window is pass

 ed, and only regions above it are

 '''
 time_axis = make_x_time(self.whole_audio, self.fs)
 above_siglevel = np.zeros(self.whole_audio.size)
 plt.figure()
 a = plt.subplot(211)
 s = make_specgram(self.whole_audio, self.fs, **self.kwargs);
 ymin, ymax = a.get_ylim()
 for each in self.info['geq_signal_level']:
 above_siglevel[each] = 1
 plt.plot(time_axis, above_siglevel*ymax*0.5,
 label='\geq signal level',
 color='C1')
 plt.legend()
 b = plt.subplot(212, sharex=a)
 make_waveform(self.whole_audio, self.fs)
 wave_max = np.max(np.abs(self.whole_audio))
 plt.plot(time_axis, above_siglevel*wave_max, label='\geq signal level')
 return a, b

 def _get_fp_keys(self, info_dictionary):
 fp_keys = list(filter(lambda x : '_fp' in x ,info_dictionary.keys()))
 if len(fp_keys)==0:
 raise ValueError("There's no frequency profile (fp) in the output info. Check the output object or method")
 return fp_keys

[docs]def check_call_background_segmentation(whole_call, fs, main_call_mask,
 **kwargs):
 '''Visualises the main call selection

 Parameters

 whole_call : np.array
 Call audio
 fs : float>0
 Sampling rate in Hz
 main_call_mask : np.array
 Boolean array where True indicates the sample
 is part of the main call, and False that it is not.

 Returns

 waveform, spec : pyplot.subplots

 Notes

 The appearance of the two subplots can be further changes by varying the
 keyword arguments. For available keyword arguments see the visualise_sound
 function.
 '''
 peak_freq, _ = get_peak_frequency(whole_call, fs)
 horizontal_line = peak_freq*1.1

 waveform, spec = visualise_sound(whole_call, fs, **kwargs)
 waveform.plot(make_x_time(main_call_mask, fs),
 main_call_mask*np.max(whole_call),'k')
 waveform.plot(make_x_time(main_call_mask, fs),
 main_call_mask*np.min(whole_call),'k')
 spec.plot(make_x_time(main_call_mask, fs),main_call_mask*horizontal_line,'k')
 return waveform, spec

[docs]def show_all_call_parts(only_call, call_parts, fs, **kwargs):
 '''
 Parameters

 only_call : np.array
 call_parts : dictionary
 Dictionary with keys 'cf' and 'fm'
 The entry for 'cf' should only have one audio segment.
 The entry for 'fm' can have multiple audio segments.
 fs : float>0
 Sampling rate in Hz.

 Returns

 None

 Notes

 For further keyword arguments to customise the spectrograms
 see documentation for make_specgram
 This function does not return any output, it only produces a
 figure with subplots.
 '''
 plt.figure(figsize=(6,8))
 plt.subplot(421)
 make_specgram(only_call, fs, **kwargs);
 plt.subplot(423)
 make_specgram(call_parts['cf'], fs, **kwargs);

 plt.subplot(422);make_waveform(only_call, fs)
 plt.subplot(424);make_waveform(call_parts['cf'], fs)

 for i,each in enumerate(call_parts['fm']):
 try:
 plt.subplot(420+i*2+6);make_waveform(each, fs)
 plt.subplot(420+i*2+5);make_specgram(each, fs, **kwargs);
 except:
 pass

def visualise_cffm_segmentation(cf,fm,X,fs, **kwargs):
 w,s = visualise_sound(X,fs, **kwargs)
 w.plot(make_x_time(cf, fs), cf*np.max(np.abs(X)),'k')
 w.plot(make_x_time(fm, fs), fm*np.max(np.abs(X)), 'r')
 s.plot(make_x_time(cf, fs), cf*fs*0.5, 'k',label='CF')
 s.plot(make_x_time(fm, fs), fm*fs*0.5, 'r',label='FM')
 plt.legend()
 return w,s

[docs]def visualise_fmrate_profile(X, freq_profile, fs):
 '''
 '''

def plot_fmrate_profile(X,fs):
 speed_profile = speed(X,fs)
 t = np.linspace(0,X.size/fs, X.size)
 plt.plot(t, speed_profile)
 plt.ylabel('Frequency modulation rate, $\\frac{kHz}{ms}$')
 plt.xlabel('Time, s')

[docs]def plot_accelaration_profile(X,fs):
 '''
 Plots the frequency acclearation profile of a frequency
 profile

 Parameters

 X : np.array
 The frequency profile with sample-level
 estimates of frequency in Hz.
 fs : float>0

 Returns

 A plt.plot which can be used as an independent figure ot
 a subplot.
 '''
 acc_profile = accelaration(X,fs)
 t = np.linspace(0,X.size/fs, X.size)
 plt.figure()
 A = plt.subplot(111)
 plt.plot(t, acc_profile)
 plt.ylabel('Frequency accelaration, $\\frac{kHz}{ms^{2}}$')
 plt.xlabel('Time, s')
 return A

[docs]def plot_movingdbrms(X,fs,**kwargs):
 '''
 '''
 m_dbrms = dB(moving_rms_edge_robust(X, **kwargs))
 plt.plot(make_x_time(m_dbrms, fs), m_dbrms)

[docs]def visualise_sound(audio, fs, **kwargs):
 '''
 Parameters

 audio
 fs
 fft_size : integer>0, optional

 Returns

 a0, a1 : subplots
 '''

 plt.figure()
 a0 = plt.subplot(211)
 make_waveform(audio, fs)

 a1 = plt.subplot(212, sharex=a0)
 make_specgram(audio, fs, **kwargs)

 plt.tight_layout()
 return a0, a1

[docs]def make_specgram(audio, fs, **kwargs):
 '''
 '''

 fft_size = get_fftsize(fs, **kwargs)
 n_overlap = fft_size-1
 cmap = kwargs.get('cmap', 'viridis')
 vmin = kwargs.get('vmin', -100)

 specgram = plt.specgram(audio, Fs=fs,
 NFFT=fft_size,
 noverlap=n_overlap,
 vmin=vmin,
 cmap=cmap);
 plt.ylabel('Frequency, Hz')
 plt.xlabel('Time, s')
 return specgram

def make_waveform(audio, fs):
 plt.plot(make_x_time(audio,fs), audio)

def time_plot(X, fs):
 plt.plot(make_x_time(X,fs), X)

[docs]def get_fftsize(fs, **kwargs):
 '''
 '''
 fft_size_given = not(kwargs.get('fft_size') is None)
 freq_resolution_given = not(kwargs.get('freq_resolution') is None)
 both_not_given = [False, False] == [fft_size_given, freq_resolution_given]

 if freq_resolution_given:
 window_size = calculate_window_size(kwargs.get('freq_resolution'), fs)
 return window_size
 elif fft_size_given:
 return kwargs['fft_size']
 elif both_not_given:
 default_freq_resoln = 1000.0 # Hz
 window_size = calculate_window_size(default_freq_resoln, fs)
 return window_size

def calculate_window_size(freq_resoln, fs):
 return int(fs/freq_resoln)

[docs]def make_overview_figure(call, fs,
 measurements,
 **kwargs):
 '''
 '''
 plt.figure()
 a0 = plt.subplot(111)
 specgram = make_specgram(call, fs, **kwargs);

 plot_fm_measurements(call, fs, measurements, a0, **kwargs)
 plot_cf_measurements(call, fs, measurements, a0, **kwargs)

 return a0

def plot_fm_measurements(call, fs, measures, subplot, **kwargs):
 # check if there's upfm
 for fm in ['upfm_','downfm_']:
 try:
 fm_start, fm_stop = measures[fm+'start'], measures[fm+'end']
 subplot.vlines((fm_start, fm_stop),
 0,fs*0.5, 'r')
 subplot.hlines(measures[fm+'terminal_frequency'],
 fm_start, fm_stop, 'b')

 except:
 pass
 return subplot

def plot_cf_measurements(call, fs, measures, subplot, **kwargs):
 peak_frequency = measures['peak_frequency']
 subplot.hlines(peak_frequency,measures['cf_start'],
 measures['cf_end'], 'b')
 return subplot

[docs]def plot_dbrms_cffmprofiles(seg_details, fs):
 '''
 Makes a plot with CF anf FM dB rms profiles. This method only works for
 peak-percentage based segmentation.

 Parameters

 seg_details : tuple
 Tuple with 3 entries. The third entry needs to be a dictionary with
 at least the following keys : 'cf_re_fm' and 'fm_re_cf'
 fs : float>0
 Sample rate in Hz

 Returns

 matplotlib plot
 '''
 time_axis = np.linspace(0,seg_details[2]['cf_re_fm'].size/fs,seg_details[2]['cf_re_fm'].size)
 try:
 plt.plot(time_axis, seg_details[2]['cf_re_fm'], label='$high - low$ passed dBrms')
 plt.plot(time_axis, seg_details[2]['fm_re_cf'], label='$low - high$ passed dBrms', linestyle='dotted')
 plt.legend(frameon=False)
 except:
 raise KeyError('Unable to find cf_re_fm and fm_re_cf keys in the segmentation output. Are you sure this is output from peak percentage method?')

Computation times

00:08.912 total execution time for gallery_accuracy files:

	CF-FM call segmentation accuracy (plot_0_cffm_accuracy.py)

	00:08.912

	0.0 MB

	Running CF-FM call segmentation (z_0_run_horseshoe_bats.py)

	00:00.000

	0.0 MB

	Generating the CF-FM synthetic calls (z_1_gen_horseshoe_bats.py)

	00:00.000

	0.0 MB

Computation times

00:14.127 total execution time for gallery_detailed files:

	‘Difficult’ example (plot_0_detailed.py)

	00:14.127

	0.0 MB

Computation times

00:34.954 total execution time for gallery_dir files:

	Bat call example (plot_0_segmenting_real_sounds.py)

	00:17.901

	0.0 MB

	Finding the right parameter setting with the call zoo (plot_the_call_zoo.py)

	00:13.804

	0.0 MB

	The peak-percentage method (plot_peak_percentage.py)

	00:02.397

	0.0 MB

	Segmenting with the PWVD method (plot_2_pwvd.py)

	00:00.851

	0.0 MB

	Bird song example (z_bird_eg.py)

	00:00.000

	0.0 MB

	Setting the correct max_acc value (z_choosing.py)

	00:00.000

	0.0 MB

	Inbuilt and custom measurements on CF and FM segments (z_custom_funcs.py)

	00:00.000

	0.0 MB

	Segmenting real-world sounds correctly with synthetic sounds (z_segmenting_accurately.py)

	00:00.000

	0.0 MB

 _images/sphx_glr_z_segmenting_accurately_thumb.png

_images/sphx_glr_z_choosing_thumb.png

_images/sphx_glr_z_custom_funcs_thumb.png

_images/sphx_glr_plot_0_cffm_accuracy_002.png
14

12

10

Accuracy

0.8

0.6

0.4

of_duration downfm_duration upfm_duration
Region type

_images/sphx_glr_plot_0_cffm_accuracy_003.png
14
12
HE
e
‘5_% 1.0
5
s
s
S 08
£
&
g
5
5 06
>
3
e
5
g 04
2
02
0.0

== PWD
N Peak percentage

CF

iFM
Call component

M

_images/fmrate_workflow.png
raw frequency profile

*\2\

cleaned frequency profile

fitted frequency profile

—o o000
‘)

|

FM rate profile

basic fundamental frequency
extraction

outlier/spike cleaning

down sampling + upsampling
through piecewise
interpolation

slope calculation

_images/sphx_glr_plot_0_cffm_accuracy_001.png
12

10

02

0.0

By

auiiifitithan

of_duration

downfm_duration
Region type

upfm_duration

_images/sphx_glr_plot_0_cffm_accuracy_006.png
125

120

of_duration downfm_duration upfm_duration
Region type

_images/sphx_glr_plot_0_cffm_accuracy_thumb.png
securacy

10

o0

: ﬁ
“
Comaton | downim aroten _wpim_ duraton

‘hegion type.

_images/sphx_glr_plot_0_cffm_accuracy_004.png
125000

100000

75000

50000

25000

10

05

0.0

-1.0

0.000 0001 0002 0.003 0.004 0005 0.006 0.007 0.008

0 250 500 750 1000 1250 1500 1750 2000

_images/sphx_glr_plot_0_cffm_accuracy_005.png
100000

50000

0,000 0,001 0.002

0003 0004 0005 0006 0.007 0008

2kHz/ms fm rate

0.000__0.001_0.002

0,003 _0.004 _0.005_0.006 _0.007 0.008

0 250 500

750

1000

1250

1500

1750 2000

_images/sphx_glr_plot_0_detailed_001.png
rrequenty, ne

L L |
I
G 3 G

Moving dB rms

&
3

125000

100000

75000

50000

25000

0

— o05ms
— 2ms

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Time, s

_images/sphx_glr_plot_0_detailed_002.png
rrequenty, ne

125000

100000

75000

50000

25000

0.02

0.00

-0.02

—— = signal level

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200

_images/sphx_glr_plot_0_detailed_003.png
0.02

0.00

-0.02

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
125000

100000
75000

50000

Frequency, Hz

25000

M

o0l
0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Time, s

_static/broken_example.png

nav.xhtml

 Table of Contents

 		
 itsfm : Identify, Track and Segment sound (by) Frequency (and its) Modulation

 		
 Basic Examples

 		
 Detailed Examples Gallery

 		
 itsfm without coding

 		
 Running a batch file analysis

 		
 Outputs from a batch file analysis

 		
 The batch file

 		
 A simple batch file

 		
 A batch file is extensible

 		
 Each row is independent

 		
 Skip a row

 		
 Run only a single row

 		
 Running parts of a batchfile

 		
 Measurement file already exists

 		
 Suppressing the ‘..already exists’ error

 		
 Which argument/s can be specified?

 		
 Accuracy Reports

 		
 Common Errors

 		
 1. Bad signal_level

 		
 2. Bad signal_level

 		
 3. Bad signal_level or window_size

 		
 4. Bad signal_level or window_size

 		
 Anomaly spans whole array

 		
 API : The user interface

 		
 API : Segmenting sounds into CF and FM

 		
 API: Measuring sounds

 		
 Measurement functions

 		
 What is a measurement function:

 		
 API : Viewing sounds, parameters and results

 		
 API: support modules

 		
 Frequency tracking

 		
 The Pseudo Wigner Ville Distribution

 		
 Signal processing

 		
 Signal cleaning

 		
 Batch processing

_images/sphx_glr_plot_0_detailed_006.png
rrequenty, ne

100000

75000

50000

25000

0.02

0.00

-0.02

raw_fp
~—— deaned_fp
— fitted_fp

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200

_static/fmrate_workflow.png
raw frequency profile

*\2\

cleaned frequency profile

fitted frequency profile

—o o000
‘)

|

FM rate profile

basic fundamental frequency
extraction

outlier/spike cleaning

down sampling + upsampling
through piecewise
interpolation

slope calculation

_images/sphx_glr_plot_0_detailed_007.png
rrequenty, ne

100000

75000

50000

25000

0.02

0.00

-0.02

raw_fp
~—— deaned_fp
— fitted_fp

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200

_images/sphx_glr_plot_0_detailed_004.png
rrequenty, ne

100000

75000

50000

25000

0.02

0.00

-0.02

raw_fp
~—— deaned_fp
— fitted_fp

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200

_images/sphx_glr_plot_0_detailed_005.png
TEREETEY. T2 Accelaration, kHz/ms?

10000

5000

100000

50000

0.025

0.000

~0.025

0.00000.0025 0.0050_0.0075_0.0100 0.0125 0.0150 0.0175_0.0200

.0000_0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.020(

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200

_static/file.png

_images/sphx_glr_plot_0_detailed_010.png
FM rate, kHz/ms

0.010 0.012 0.014 0.016 0.018 0.020

100000

50000

Frequency, Hz

0.010 0.012 0.014 0.016 0.018 0.020
Time, s

0.010 0.012 0.014 0.016 0.018 0.020

_images/sphx_glr_plot_0_detailed_011.png
0.02

0.00

-0.02

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
125000

100000
75000

50000

Frequency, Hz

25000

M

o0l
0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Time, s

_images/sphx_glr_plot_0_detailed_008.png
FM rate, kHz/ms

0.00000.0025 0.0050_0.0075_0.0100 0.0125 0.0150 0.0175_0.0200
100000

50000

Frequency, Hz

.0000_0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.020(

0.025

0.000

~0.025

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200

_static/itsfm_logo.png
itsfm

_images/sphx_glr_plot_0_detailed_009.png
0.02

0.00

-0.02

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
125000

100000
75000

50000

Frequency, Hz

25000

M

o0l
0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Time, s

_images/sphx_glr_plot_0_detailed_thumb.png
s A,

Pl O
!/ 5

_images/sphx_glr_plot_0_segmenting_real_sounds_001.png
Frequency, Hz

02

0.1

0.0

120000

100000

80000

60000 -

0.000

0.005 0.010 0.015 0.020

Time, s

_images/sphx_glr_plot_0_segmenting_real_sounds_002.png
rrequenty, ne

125000

100000

75000

50000

25000

0.000

—— = signal level

0.000

0.005

0.010

0.015 0.020

_static/plus.png

_images/sphx_glr_plot_0_segmenting_real_sounds_005.png
10 2 kHz threshold

FM rate, kHz/ms

0.000 0.005 0010 0015 0.020
100000

50000

Frequency, Hz

0.000 0.005 0,010 0,015 0.020

02

0.0

0.000 0.005 0.010 0.015 0.020

_images/sphx_glr_plot_0_segmenting_real_sounds_thumb.png

_images/sphx_glr_plot_0_segmenting_real_sounds_003.png
Frequency, Hz

02

0.1

0.0

0.1

02

125000

100000

75000

50000

25000

o0l

0.000

0.005

0.010

Time, s

0.015

0.020

_images/sphx_glr_plot_0_segmenting_real_sounds_004.png
100000
75000
50000 —— Raw frequency profile (FP)

25000 Error corrected FP
Downsampled FP

Frequency, Hz

0.000 0.005 0.010 0.015 0.020

_images/sphx_glr_plot_2_pwvd_003.png
0002 0004 0006 0008 0010 0012 0014

_images/sphx_glr_plot_2_pwvd_thumb.png
os

o0

007 004 % ade oo oom oo

_images/sphx_glr_plot_2_pwvd_001.png
Frequency, Hz

10

05

0.0

-1.0

20000

15000

10000

5000

0000 0002 0004 0006 0008 0010 0012 0014

0000 0002 0004 0006 0008 0010 0012 0014
Time, s

_images/sphx_glr_plot_2_pwvd_002.png
Frequency, Hz

22050.0

19845.0

17640.0

15435.0

13230.0

11025.0

8820.0

6615.0

4410.0

2205.0

0.0

0.007
Time,seconds

0.011

_static/minus.png

_static/no_image.png

_images/sphx_glr_plot_peak_percentage_002.png
Frequency, Hz

02

0.1

0.0

0.1

02

125000

100000

75000

50000

25000

o0l

0.000

0.005

0.010

Time, s

0.015

0.020

_images/sphx_glr_plot_peak_percentage_003.png
Frequency, Hz

125000

100000

75000

50000

25000

0.005 0.010 0.015

—— high~ low passed dBrms
low — high passed dBrms

0.000

0.005 0.010 0.015 0.020

_images/sphx_glr_plot_peak_percentage_001.png
Frequency, Hz

02

0.1

0.0

120000

100000

80000

60000 -

0.000

0.005 0.010 0.015 0.020

Time, s

_images/sphx_glr_plot_the_call_zoo_002.png
Frequency, Hz

10

05

0.0

-1.0

v

|

15000 7
12500
10000
7500
5000
2500

0.00

025

050

075

1.00

1.2!

.25

150

0.00

025

050

075
Time, s

1.00

125

150

_images/sphx_glr_plot_the_call_zoo_thumb.png

_images/sphx_glr_plot_peak_percentage_thumb.png

_images/sphx_glr_plot_the_call_zoo_001.png
Frequency, Hz

10

05

0.0

-1.0

15000 7

10000

5000

0.00

025

050

075

1.00

125

150

0.00

025

050

075
Time, s

1.00

125

150

_images/sphx_glr_z_bird_eg_thumb.png

_images/sphx_glr_z_0_run_horseshoe_bats_thumb.png

_images/sphx_glr_z_1_gen_horseshoe_bats_thumb.png

