
itsFM
Release 0.0.1

Thejasvi Beleyur

Nov 05, 2020

EXAMPLES!

1 Introduction 1

2 Let’s cut to the chase : some examples NOW 3
2.1 Basic Examples . 3
2.2 Detailed Examples Gallery . 27
2.3 itsfm without coding . 39
2.4 Accuracy Reports . 42

3 What the package does: 59

4 What the package does not: 61

5 Installation 63

6 What the package could do with (future feature ideas): 65

7 Why is everything in this codebase a function? Have you heard of classes? 67

8 Where to get help 69
8.1 Common Errors . 69

9 I found a bug and/or have fixed something 71

10 Acknowledgements 73

11 License 75
11.1 API : The user interface . 75
11.2 API : Segmenting sounds into CF and FM . 78
11.3 API: Measuring sounds . 87
11.4 API : Viewing sounds, parameters and results . 91
11.5 API: support modules . 93

Python Module Index 111

Index 113

i

ii

CHAPTER

ONE

INTRODUCTION

The itsfm package identifies regions of sound with and without frequency modulation, and allows custom measure-
ments to be made on them. It’s all in the name. Each of the task behind the identification, tracking and segmenting of
a sound can be done independently.

The sounds could be bird, bat, whale, artifical sounds - it should hopefully work, however be aware that this is an alpha
version package at the moment.

The basic workflow involves the tracking of a sounds frequency over time, and then calculating the rate of frequency
modulation (FM), which is then used to decide which parts of a sound are frequency modulated, and which are not.
Here are some examples to show the capabilities of the package.

The broad idea of this package is to achieve a loose coupling between the I,T, S in the package name. itsfm can do all
or one of the below.

• I : Identify sounds by frequency modulation. An input audio can have multiple sounds in it, separated by silence
or fainter regions.

• T : Track the sound’s frequency over time. The PWVD method allows tracking a sound’s frequency with high
temporal resolution.

• S : Segment according to the frequency modulation. Calculates the local rate of frequency modulation over a
sound and classifies parts of it as frequency modulated (FM) or constant frequency (CF)

Warning : The docs are constantly under construction, and is likely to change fairly regularly like the stairs in Hog-
warts. Do not be surprised by dramatic changes, but do come back regularly to see improvements!

1

itsFM, Release 0.0.1

2 Chapter 1. Introduction

CHAPTER

TWO

LET’S CUT TO THE CHASE : SOME EXAMPLES NOW

2.1 Basic Examples

This is a set of relatively straightforward examples. Start with the bat call example! The bat example is the only one
with all the plots already rendered due to RAM limitations - sorry about that! You can of course always download all
the examples and run them as individual .py or Jupyter notebooks!

All of the frequency tracking in itsfm is based on generating what is called the Pseudo Wigner-Ville Distribution
(PWVD). To get a very quick idea of how it compares to a spectrogram checkout the ‘Segmenting with the PWVD
method’ example.

2.1.1 Bat call example

The <INSERTNEWNAME> package has many example recordings of bat calls thanks to the generous contributions
of bioacousticians around the world:

import matplotlib.pyplot as plt
import numpy as np
import itsfm
from itsfm.run_example_analysis import contributors
print(contributors)

Out:

Cannot import SoundFile!!
/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-
→˓packages/itsfm-0.0.1-py3.7.egg/itsfm/data/__init__.py:17: UserWarning:

The package soundfile could not be imported properly. Check your installation.Using
→˓the scipy.io package for now.
warnings.warn(msg1+msg2)

/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-
→˓packages/itsfm-0.0.1-py3.7.egg/itsfm/data/__init__.py:66: WavFileWarning: Chunk
→˓(non-data) not understood, skipping it.
fs_original, audio = wav.read(each)

/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-
→˓packages/itsfm-0.0.1-py3.7.egg/itsfm
/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-
→˓packages/itsfm-0.0.1-py3.7.egg/itsfm/data_contributors.csv
0 Aditya Krishna
1 Aiqing Lin
2 Klaus-Gerhard Heller

(continues on next page)

3

itsFM, Release 0.0.1

(continued from previous page)

3 Neetash MR
4 Laura Stidsholt
Name: people, dtype: object

from itsfm.data import example_calls, all_wav_files

Separating the constant frequency (CF) and frequency-modulated parts of a call

Here, let’s take an example R. mehelyi/euryale(?) call recording. These bats emit what are called ‘CF-FM’ calls. This
is what it looks like.

bat_rec = list(map(lambda X: '2018-08-17_34_134' in X, all_wav_files))
index = bat_rec.index(True)
audio, fs = example_calls[index] # load the relevant example audio

w,s = itsfm.visualise_sound(audio,fs, fft_size=128)
set the ylim of the spectrogram narrow to check out the call in more detail
s.set_ylim(60000, 125000)

Out:

(60000.0, 125000.0)

4 Chapter 2. Let’s cut to the chase : some examples NOW

itsFM, Release 0.0.1

Now, let’s segment and get some basic measurements from this call. Ignore the actual parameter settings for now.
We’ll ease into it later !

non_default_parameters = {
'segment_method':'pwvd',
'signal_level':-26, # dBrms re 1
'fmrate_threshold':2.0, # kHz/ms
'max_acc':2.0, # kHz/ms^2
'window_size':int(fs*0.0015) # number of samples
}

outputs = itsfm.segment_and_measure_call(audio, fs,

**non_default_parameters)

load the results into a convenience class
itsFMinspector parses the output and creates diagnostic plots
and access to the underlying diagnostic data itself

output_inspect = itsfm.itsFMInspector(outputs, audio, fs)

Let’s check that the threshold we chose actually matches the region of audio we’re interested in

output_inspect.visualise_geq_signallevel()

Out:

2.1. Basic Examples 5

itsFM, Release 0.0.1

(<AxesSubplot:xlabel='Time, s', ylabel='Frequency, Hz'>, <AxesSubplot:>)

Let’s take a look at how long the different parts of the call are.

output_inspect.measurements

Verifying the CF-FM segmentations

Here, let’s see where the calls are in time and how they match the spectrogram output

output_inspect.visualise_cffm_segmentation()
plt.tight_layout()
plt.savefig('pwvd_cffm_segmentation.png')

Even without understanding what’s happening here, you can see the ‘sloped’ regions are within the red boxes, and the
‘relatively even region is in the black box. These are the FM and CF parts of this call.

6 Chapter 2. Let’s cut to the chase : some examples NOW

itsFM, Release 0.0.1

The underlying frequency profile of a sound

The CF and FM parts of a call in the ‘pwvd’ method is based on actually tracking the instantaneous frequency of the
call with high temporal resolution. With this profile, the rate of frequency change, or modulation can be calculated
for each region. Using a threshold rate of the frequency modulation, call regions above and below it can be easily
identified!

s,w = output_inspect.visualise_frequency_profiles()
s.legend_.remove()

handles, labels = s.get_legend_handles_labels()
labels_new = ['Raw frequency profile (FP)','Error corrected FP','Downsampled FP']
l = s.legend(handles, labels_new, loc=8, fontsize=11,

borderaxespad=0., frameon=False, labelcolor='w')
s.set_ylabel('Frequency, Hz', labelpad=-1.5)
plt.savefig('pwvd_freqprofiles.png')

You can see from the plot above that the frequency profile of the sound shows a relatively constant frequency region
of the call in middle and with frequency modulated regions in the middle.

2.1. Basic Examples 7

itsFM, Release 0.0.1

The underlying frequency modulation rate

fmrate_plot, spec, waveform = output_inspect.visualise_fmrate()
fmrate_plot.hlines(2,0,audio.size/fs, linestyle='dotted',label='2 kHz threshold')
fmrate_plot.legend(frameon=False)
plt.savefig('pwvd_fmrate_diagnostic.png')

Performing measurements on the CF and FM parts of a call

We were just able to get some measurements on the Cf and FM parts of the call. What if we want more information,
eg. the rms, and peak frequency of each CF and FM call part? This is where <insertname> has a bunch of inbuilt and
customisable measurement functions.

inbuilt_measures = [itsfm.measure_peak_frequency,
itsfm.measure_rms]

non_default_parameters['measurements'] = inbuilt_measures

The output is a tuple with 3 objects in it related to the segmentation individual call parts and the measurements made
on them. We’re happy with the actual segmentation, and so won’ be making anymore diagnostic plots, and won’ need
to call itsFMInspector anymore. We can unpack the outputs into its components and just view the measurements.

8 Chapter 2. Let’s cut to the chase : some examples NOW

itsFM, Release 0.0.1

seg_out, call_parts, results_inbuilt = itsfm.segment_and_measure_call(audio, fs,

**non_default_parameters
)

results_inbuilt

The results are output as a pandas DataFrame, which means they can be easily saved as a csv file if you were to run it
in your system. Each row corresponds to one identified CF or FM region in an audio recording.

Defining custom measurements

If the inbuilt measurement functions are not enough - then you may want to write your own. See the documenta-
tion for what a measurement function must look like by typing help(itsfm.measurement_function). The
‘peak_to_peak’ function below calculates the difference between the highest negative and highest positive value. This
effectively the maximum range of values that the signal takes.

def peak_to_peak(whole_audio, fs, segment, **kwargs):
'''
Calculates the range between the minimum and the maximum of the audio
samples.
'''
relevant_audio = whole_audio[segment]
peak2peak = np.max(relevant_audio) - np.min(relevant_audio)
return {'peak2peak':peak2peak}

custom_measure_fn = [peak_to_peak]

add the custom_measure list to the :code:`non_default_parameters` dictionary
#
non_default_parameters['measurements'] = custom_measure_fn

seg_out, call_parts, results_custom = itsfm.segment_and_measure_call(audio, fs,

**non_default_
→˓parameters

)
results_custom

Of course, needless to say, you can also mix and match inbuilt with custom defined measurement functions.

mixed_measures = [peak_to_peak, itsfm.measure_rms]
non_default_parameters['measurements'] = mixed_measures

seg_out, call_parts, results_mixed = itsfm.segment_and_measure_call(audio, fs,

**non_default_parameters
)

results_mixed

Total running time of the script: (0 minutes 17.901 seconds)

2.1. Basic Examples 9

itsFM, Release 0.0.1

2.1.2 Segmenting with the PWVD method

The ‘PWVD’ method stands for the Pseudo Wigner-Ville Distribution. It is a class of time-frequency representations
that can be used to be gain very high spectro- temporal resolution of a sound [1,2], and can outdo the spectrogram in
terms of how well it allows the tracking of frequency over time.

How does it work?

The PWVD is made by performing a local auto-correlation at each sample in the audio signal, with a window applied
onto it later. The FFT of this windowed- auto correlation reveals the local spectro-temporal content. However, because
of the fact that there are so many auto-correlations and FFT’s involved in its construction - the PWVD can therefore
take much more time to generate.

Note

The ‘tftb’ package [3] is used to generate the PWVD representation in this package. The website is also a great place
to see more examples and great graphics of the PWVD and alternate time-frequency distributions!.

References

[1] Cohen, L. (1995). Time-frequency analysis (Vol. 778). Prentice hall.

[2] Boashash, B. (2015). Time-frequency signal analysis and processing: a comprehensive reference. Academic Press.

[3] Jaidev Deshpande, tftb 0.1.1, https://tftb.readthedocs.io/en/latest/auto_examples/index.html

Let’s begin by making a synthetic CF-FM call which looks a lot like a horseshoe/leaf nosed bat’s call

import matplotlib.pyplot as plt
import numpy as np
import scipy.signal as signal
import itsfm
from itsfm.frequency_tracking import generate_pwvd_frequency_profile
from itsfm.frequency_tracking import pwvd_transform
from itsfm.simulate_calls import make_cffm_call
from itsfm.segment import segment_call_into_cf_fm

fs = 44100
call_props = {'cf':(8000, 0.01),

'upfm':(2000,0.002),
'downfm':(100,0.003)}

cffm_call, freq_profile = make_cffm_call(call_props, fs)
cffm_call *= signal.tukey(cffm_call.size, 0.1)

w,s = itsfm.visualise_sound(cffm_call, fs, fft_size=64)

10 Chapter 2. Let’s cut to the chase : some examples NOW

https://tftb.readthedocs.io/en/latest/auto_examples/index.html

itsFM, Release 0.0.1

The PWVD is a somewhat new representation to most people, so let’s just check out an example

pwvd = pwvd_transform(cffm_call, fs)

The output is an NsamplesxNsamples matrix, where Nsamples is the number of samples in the original audio.

plt.figure()
plt.imshow(abs(pwvd), origin='lower')
num_rows = pwvd.shape[0]
plt.yticks(np.linspace(0,num_rows,11), np.linspace(0, fs*0.5, 11))
plt.ylabel('Frequency, Hz')
plt.xticks(np.linspace(0,num_rows,5),

np.round(np.linspace(0, cffm_call.size/fs, 5),3))
plt.xlabel('Time,seconds')

2.1. Basic Examples 11

itsFM, Release 0.0.1

Out:

Text(0.5, 0, 'Time,seconds')

In comparison to the ‘crisp’ time-frequency representation of the PWVD, let’s compare how a spectrogram with
comparable parameters looks:

onems_samples = int(fs*0.001)
plt.figure()
out = plt.specgram(cffm_call, Fs=fs, NFFT=onems_samples, noverlap=onems_samples-1)

12 Chapter 2. Let’s cut to the chase : some examples NOW

itsFM, Release 0.0.1

The dominant frequency at each sample can be tracked to see how the the frequency changes over time. Let’s not get
into the details right away, and proceed with the segmentation first.

cf, fm, info = segment_call_into_cf_fm(cffm_call, fs, segment_method='pwvd',
window_

→˓size=50)

The segment_call_into_cf_fm provides the estimates of which samples are CF and FM. The info object is a dictionary
with content that varies according to the segmentation method used. For instance:

info.keys()

Out:

dict_keys(['moving_dbrms', 'geq_signal_level', 'raw_fp', 'acc_profile', 'spikey_
→˓regions', 'fmrate', 'cleaned_fp', 'fitted_fp'])

Total running time of the script: (0 minutes 0.851 seconds)

2.1. Basic Examples 13

itsFM, Release 0.0.1

2.1.3 The peak-percentage method

The peak percentage method works if the constant frequency portion of a sound segment is the highest frequency. For
instance, in CF-FM bat calls, the calls typically have a CF and one or two FM segments connected.

This method is loosely based on the spectrogram based CF-FM segmentation in [1], but most importantly it differs
because it is implemented completely in the time-domain.

How does it work?

A constant frequency segment in any sound leads to a peak in the power spectrum. The same audio is high-passed and
low-passed at a threshold frequency that’s very close (eg. 99% of the peak frequency)

and just below the peak frequency. This creates two versions of the same sound, one with an emphasis on
the CF, and one with the emphasis on

the FM. By comparing the two sounds, the segmentation proceeds to detect CF and FM parts.

References

[1]Schoeppler, D., Schnitzler, H. U., & Denzinger, A. (2018). Precise Doppler shift compensation in the hipposiderid bat,
Hipposideros armiger. Scientific reports, 8(1), 1-11.

import matplotlib.pyplot as plt
import scipy.signal as signal
import itsfm
from itsfm.simulate_calls import make_cffm_call
from itsfm.segment import segment_call_into_cf_fm

from itsfm.data import example_calls, all_wav_files

bat_rec = list(map(lambda X: '2018-08-17_34_134' in X, all_wav_files))
index = bat_rec.index(True)
audio, fs = example_calls[index] # load the relevant example audio

w,s = itsfm.visualise_sound(audio,fs, fft_size=128)
set the ylim of the spectrogram narrow to check out the call in more detail
s.set_ylim(60000, 125000)

14 Chapter 2. Let’s cut to the chase : some examples NOW

itsFM, Release 0.0.1

Out:

(60000.0, 125000.0)

Now, let’s proceed to run the peak-percentage based segmentation.

non_default_params = {'segment_method':'peak_percentage',
'window_size':int(fs*0.0015),
'signal_level':-30,
'double_pass':True}

outputs = itsfm.segment_and_measure_call(audio, fs,

**non_default_params)

load the results into a convenience class
itsFMinspector parses the output and creates diagnostic plots
and access to the underlying diagnostic data itself

output_inspect = itsfm.itsFMInspector(outputs, audio, fs)

2.1. Basic Examples 15

itsFM, Release 0.0.1

Verifying the CF-FM segmentations

Here, let’s see what the output of the peak-percentage method shows

output_inspect.visualise_cffm_segmentation()
plt.tight_layout()
plt.savefig('pwvd_cffm_segmentation.png')

Low/high passed audio profiles

Let’s also take a look at the low and high -passed audio profiles. The regions where the dB rms of the high-passed
audio is greater than the low-passed audio is considered CF and vice-versa is considered FM.

spec, profiles = output_inspect.visualise_pkpctage_profiles()
profiles.legend(loc=9, frameon=False)
plt.savefig('pkpctage_profiles.png')

16 Chapter 2. Let’s cut to the chase : some examples NOW

itsFM, Release 0.0.1

The two profiles match the expected CF/FM regions fairly well.

Total running time of the script: (0 minutes 2.397 seconds)

2.1.4 Finding the right parameter setting with the call zoo

The ‘call zoo’ is an inbuilt collection of sounds which were made for testing the package. It has a variety of sounds to
assess the accuracy of the segmentation and measuring capabilities of the pacakge.

import matplotlib.pyplot as plt
import numpy as np
np.random.seed(82319)
import itsfm
from itsfm.simulate_calls import make_call_zoo, add_noise
from itsfm.segment import segment_call_into_cf_fm

fs=30000

freq_profile, call_zoo = make_call_zoo(fs=fs, gap=0.1)
add_noise(call_zoo, -40)

itsfm.visualise_sound(call_zoo, fs, fft_size=128)
itsfm.plot_movingdbrms(call_zoo,fs, window_size=int(fs*0.001))

2.1. Basic Examples 17

itsFM, Release 0.0.1

Now, let’s run the segmentation on this sound

segment_parameters = {'window_size' : int(fs*0.001),
'segment_method':'pwvd',
'signal_level': -30,
'sample_every':0.25*10**-3}

segment_out = segment_call_into_cf_fm(call_zoo, fs, **segment_parameters)
cf, fm, info = segment_out
itsfm.visualise_cffm_segmentation(cf,fm,call_zoo,fs, fft_size=128)

18 Chapter 2. Let’s cut to the chase : some examples NOW

itsFM, Release 0.0.1

Out:

(<AxesSubplot:>, <AxesSubplot:xlabel='Time, s', ylabel='Frequency, Hz'>)

Now, the results show that some sounds are being recognised, but a closer look the results indicate there’s too much
silence on either side of the sounds, and the FM sweeps at the end have been mis-classified as CF sounds. Why is this
happening? This kind of apparent errors typically come from a bad match between the recordings properties and the
default parameter values in place. The ‘issues’ can be sorted out most of the time by playing around with the parameter
values.

Total running time of the script: (0 minutes 13.804 seconds)

2.1. Basic Examples 19

itsFM, Release 0.0.1

2.1.5 Bird song example

Here we’ll use the recordings of a common bird, the great tit (Parus major). The recording is an excerpt of a bigger
recording made by Jarek Matusiak (Xeno Canto, XC235125) - give it a listen here.

Note

As of version 0.0.X, this recording is also a very good example of how multi-harmonic sounds can’t be tracked very
well!

import matplotlib.pyplot as plt
plt.rcParams['agg.path.chunksize'] = 10000
import numpy as np
import scipy.signal as signal
import itsfm
from itsfm.data import example_calls, all_wav_files,folder_with_audio_files

great_tit_rec = list(map(lambda X: 'Parus_major_Poland' in X, all_wav_files))
index = great_tit_rec.index(True)
full_audio, fs = example_calls[index] # load the relevant example audio

#
w,s = itsfm.visualise_sound(full_audio, fs, fft_size=512)
s.set_ylim(0,10000)

The complete audio recording takes a long time to run, and so let’s focus on the sections between 0.8-1.5s. It contains
one example of the three types of the great tit’s calls.

t_start, t_stop = 0.8, 1.5
selection = slice(int(fs*t_start), int(fs*t_stop))
audio = full_audio[selection]

w,s = itsfm.visualise_sound(audio, fs, fft_size=256)
s.set_ylim(0,10000)

The bird song has a three types of calls, a smooth frequency modulated sweep a constant frequency tone, and the last
element has a rather rapid frequency sweep which then transitions into a constant frequency segment.

Setting the correct signal level

The frequency profile of a sound is calculated only for those chunks of the audio that are above a threshold dBrms,
called the signal_level. Make a moving dBrms plot to see which a sensible signal threshold to set

plt.figure()
a = plt.subplot(211)
itsfm.plot_movingdbrms(audio, fs, window_size=int(0.005*fs))
plt.subplot(212, sharex=a)
out = plt.specgram(audio, Fs=fs, NFFT=256, noverlap=255)
a.grid()

With this plot, we can see that a level of -34 dB rms with a 5ms window will choose the song elements well. Let’s try
it out.

20 Chapter 2. Let’s cut to the chase : some examples NOW

https://www.xeno-canto.org/235125

itsFM, Release 0.0.1

non_default_params = {
'segment_method':'pwvd',
'signal_level':-34,
'window_size':int(fs*0.005),
'pwvd_window':0.010,
'medianfilter_size':0.005,
'sample_every':20*10**-3
}

output = itsfm.segment_and_measure_call(audio, fs,**non_default_params)

bird_inspect = itsfm.itsFMInspector(output,audio,fs, fft_size=512)

First, let’s check if we’re actually picking up the bird signals reliable with the signal_level we chose.

bird_inspect.visualise_geq_signallevel()

And let’s look at the measurements

bird_inspect.measurements

We see there are 9 valid sound segments picked up, and their start and stop times are displayed. How have they been
classified?

bird_inspect.visualise_cffm_segmentation()

Whoops, it seems like they’ve all been classified as CF parts. Even though the audio actually has FM parts in it, or so
we think. Well, whether something is frequency modulated or not is set by the fmrate_threshold. We need to correct
the situation by setting it to a more sensible value.

Setting a non-default FM rate

The segmentation of sounds into FM and CF regions happens by looking at the FM rate over the sound. Whenever a
region crosses the FM rate threshold, it is considered an FM region. Let’s check out the FM rate over the sound with
the current parameters, and then choose a more sensible, non-default fmrate_threshold parameter.

bird_inspect.visualise_fmrate()

As you can see the constant frequency and modulated parts are being tracked pretty well, but they’re not being classified
properly. The CF or FM classification is based on the estimated reate of frequency modulation over the sound, ,the
fmrate_threshold. The default if 1kHz/ms, which is a lot if you think about it. At this rate, the bird would have gone
from 20kHz to 20 Hz in about 20 milliseconds, and you would have barely heard it. This default FM rate is set to pick
up FM regions in bats, and so it needs to be adjusted for other animals.

The fm segments in the great tits song correspond to an FM rate of >= 0.005 kHz/ms. Remember that all frequency
modulation rates are in kHz/ms. Let’s set this as the threshold and proceed to segment.

non_default_params['fmrate_threshold'] = 0.02 #

output_newrate = itsfm.segment_and_measure_call(audio, fs,

**non_default_params)

newrate_inspect = itsfm.itsFMInspector(output_newrate, audio, fs, fft_size=512)

And let’s look at the measurements

2.1. Basic Examples 21

itsFM, Release 0.0.1

newrate_inspect.measurements

Let’s check the the segmentation output again now

newrate_inspect.visualise_cffm_segmentation()

So, it’s improved, and there seem to be mainly FM regions in at the edges of the sounds. Is this real, or an artifact of
the frequency profile fitting. Let’s inspect the actual frequency profiles underlying the fmrate calcultions

newrate_inspect.visualise_frequency_profiles()

The issue with the third element is that there’s a multiple harmonics and this may cause the local frequency estiamte
to vary up and down . We can try to overcome the effect of non-peak frequencies using the percentile parameter.
The percentile essentially

to be completed. . . .

Total running time of the script: (0 minutes 0.000 seconds)

2.1.6 Setting the correct max_acc value

Some of the methods in the <INSERTNAME> package estimate the instantaneous frequency at sample-level resolu-
tion. Most methods will suffer from edge effects which cause the estimated instantaneous frequency to spike especially
at the start and end of

the sound or due to noise.

The typical way these spikes are dealt with is to calculate an aboslute frequency accelaration profile along the frequency
profile. Any regions above a certain threshold are considered anomalous, and an (sort of) extrapolation is attempted
using the nearest non-anomalous regions.

An example frequency profile

Let’s create an example sound, and use the PWVD method to track the instantaneous frequency over time.

import numpy as np
from itsfm.frequency_tracking import generate_pwvd_frequency_profile, frequency_spike_
→˓detection
from itsfm.simulate_calls import make_fm_chirp
import matplotlib.pyplot as plt
from itsfm.view_horseshoebat_call import plot_accelaration_profile, time_plot

Let’s create a hyperbolic chirp, this is a nice example because the the hyperbolic chirp shows a nice variation in
frequeny velocity over time. This means the accelaration varies from low–>high. But what is an ‘acceptable’ value of
accelaration to allow. Let’s inspect the accelaration profile itself to understand what accelaration values are ‘normal’
and which values correspond to the spikes caused by the edge effects and noise.

fs = 22100
chirp = make_fm_chirp(500, 5000, 0.100, fs, 'logarithmic')

raw_fp, frequency_index = generate_pwvd_frequency_profile(chirp,
fs, percentile=99)

plt.figure()
time_plot(raw_fp,fs)

22 Chapter 2. Let’s cut to the chase : some examples NOW

itsFM, Release 0.0.1

The spikes caused by edge effects are there here too- even without noise. Let’s check out the typical accelaration
profile of this sound, and pay special attention to the values towards the ends.

acc_plot = plot_accelaration_profile(raw_fp, fs)
acc_plot.set_ylim(0,0.5) # show a limited y-axis, because the frequency spikes mess
→˓up the display

Remember that the accelaration of the frequency is calcualted at a per-sample resolution and thus may not show too
much variation – but the profile still shows outliers! Looking at this plot we can see that a value ≥ 0.1 kHz/ms 2 is
likely to be an outlier.

Now, we know a way to set sensible max_acc values for our own recordings - let’s see how this translates to outlier
detection in the frequency profile:

spikey_regions, acc_profile = frequency_spike_detection(raw_fp, fs, max_acc=0.1)

plt.figure()
a = plt.subplot(211)
time_plot(raw_fp, fs)
plt.plot(np.argwhere(spikey_regions)/fs, raw_fp[spikey_regions],

'*', label='Anomalous spikes in frequency profile')
plt.legend()
a.set_title('Detected spikes in frequency profile')
a.set_ylabel('Frequency, Hz')
a.set_xticks([])
b = plt.subplot(212)
time_plot(acc_profile, fs)
plt.plot(np.argwhere(spikey_regions)/fs, acc_profile[spikey_regions], '*')
b.set_ylim(0,0.5)
b.set_title('Frequency accelaration profile')
b.set_ylabel('Frequency accelaration, kHz/ms^{2}')

Total running time of the script: (0 minutes 0.000 seconds)

2.1.7 Inbuilt and custom measurements on CF and FM segments

By default, a baic set of information/measurements is given for each recognised CF/FM segment in the input audio,
its start, stop and duration.

Let’s begin by making a synthetic CF-FM call which looks a lot like a horseshoe/leaf nosed bat’s call

import matplotlib.pyplot as plt
import scipy.signal as signal
from itsfm.simulate_calls import make_cffm_call
from itsfm.view_horseshoebat_call import visualise_call
from itsfm.user_interface import segment_and_measure_call

Lets now create a sound that’s got only one CF and one FM component in it. Horseshoe/leaf nosed bats emit these
kinds of calls too.

fs = 44100
call_props = {'cf':(8000, 0.01),
'upfm':(8000,0.002), # not that the 'upfm' frequency starts at the CF frequency!
'downfm':(100,0.003)}

cffm_call, freq_profile = make_cffm_call(call_props, fs)
cffm_call *= signal.tukey(cffm_call.size, 0.1)

(continues on next page)

2.1. Basic Examples 23

itsFM, Release 0.0.1

(continued from previous page)

w,s = visualise_call(cffm_call, fs, fft_size=64)

Now, segment and measure using the ‘peak pecentage’ method

output = segment_and_measure_call(cffm_call, fs,
segment_method = 'peak_percentage',
peak_percentage=0.95,
window_size=44)

segment_info, call_parts, results, _ = output

If everything went well, the output should give us one CF and one FM component. The parameters may need to be
tweaked based on the sampling rate and the amount of frequency modulation in the calls. This is true especially for
sounds with a ‘curvature’ in the frequency profile, because sometimes the frequency change may be gradual and then
become sudden, eg in the transition between CF and FM in this example call.

Another important aspect to notice is that the window size has been set to 44 samples. This corresponds to a short
window of ~0.1ms. This short window size is used to compare the relative CF and FM emphasised dB rms profiles
(see ‘The peak percentage method’).

print(results)

What if we want more than just the duration of each component? There are inbuilt functions such which allow the
measurement of the rms, peak-amplitude, peak frequency and terminal frequency of each segment. Let’s get the peak
frequency and peak amplitude for all segments

from itsfm.measurement_functions import measure_peak_frequency, measure_peak_amplitude

added_measures = [measure_peak_amplitude, measure_peak_frequency]

output = segment_and_measure_call(cffm_call, fs,
peak_percentage=0.95,
window_size=44,
measurements=added_measures)

segment_info, call_parts, results, _ = output

print(results)

Now, what if this is not what we’re looking for and we needed to get, say, the dB peak amplitude? This calls for a
custom measurement function. Each measurement function follows a particular pattern of three inputs and one output.
See the measurement_function documentation or call it through the help

from itsfm import measurement_functions as measure_funcs
help(measure_funcs)

Let’s also take a look at the source code for one of the measurement functions we just used above mea-
sure_peak_amplitude:

import inspect
print(inspect.getsource(measure_peak_amplitude))

The output needs to be a dictionary with the measurement names and values in the keys and items respectively.

So, now let’s get the dB peak value of our audio segments

24 Chapter 2. Let’s cut to the chase : some examples NOW

itsFM, Release 0.0.1

import numpy as np
from itsfm.signal_processing import dB

def measure_dBpeak(audio, fs, segment, **kwargs):
relevant_audio = audio[segment]
dB_peak_value = dB(np.max(np.abs(relevant_audio)))
return {'dB_peak': dB_peak_value}

output = segment_and_measure_call(cffm_call, fs,
peak_percentage=0.95,
window_size=44,
measurements=[measure_dBpeak])

segment_info, call_parts, results, _ = output

print(results)

So, looking at the dB peak value tells us that both CF and FM components are pretty strong, and of comparable levels.
Both are close to 0 dB (re 1), which means they’re pretty close to the maximum signal value.

Just like the measure_dBpeak, we can chain a series of inbuilt or custom measurement functions in a list - and the
outputs will all appear as a wide-formate Pandas DataFrame.

Total running time of the script: (0 minutes 0.000 seconds)

2.1.8 Segmenting real-world sounds correctly with synthetic sounds

It’s easy to figure out if a sound is being correcly segmented if the signal at hand is well defined, and repeatable,
like in many technological/ engineering applications. However, in bioacoustics, or a more open-ended field recording
situation, it can be very hard to know the kind of signal that’ll be recorded, or what its parameters are.

Just because an output is produced by the package, it doesn’t always lead to a meaningful result. Given a set of
parameters, any function will produce an output as long as its sensible. This means, with one set of parameters/methods
the CF segment might be 10ms long, while with another more lax parameter set it might be 20ms long! Remember, as
always, GIGO (Garbage In, Garbage Out):P.

How to segment a sound into CF and FM segments in an accurate way?

Synthetic calls to the rescue

Synthetic calls are sounds that we know to have specific properties and can be used to test if a parameter set/ segmen-
tation method is capable of correctly segmenting our real-world sounds and uncovering the true underlying properties.

The simulate_calls module has a bunch of helper functions which allow the creation of FM sweeps, constant frequency
tones and silences. In combination, these can be used to get a feeling for which segmentation methods and parameter
sets work well for your real-world sound (bat, bird, cat, <insert sound source of choice>)

2.1. Basic Examples 25

https://en.wikipedia.org/wiki/Garbage_in,_garbage_out

itsFM, Release 0.0.1

Generating a ‘classical’ CF-FM bat call

import matplotlib.pyplot as plt
import numpy as np
import scipy.signal as signal
from itsfm.simulate_calls import make_cffm_call,make_tone, make_fm_chirp, silence
from itsfm.view_horseshoebat_call import visualise_call
from itsfm.segment_horseshoebat_call import segment_call_into_cf_fm
from itsfm.signal_processing import dB, rms

fs = 96000
call_props = {'cf':(40000, 0.01),

'upfm':(38000,0.002),
'downfm':(30000,0.003)}

cffm_call, freq_profile = make_cffm_call(call_props, fs)
cffm_call *= signal.tukey(cffm_call.size, 0.1)

w,s = visualise_call(cffm_call, fs, fft_size=128)

Remember, the terminal frequencies and durations of the CF-FM calls can be adjusted to the calls of your species of
interest!!

A multi-component bird call

Let’s make a sound with two FMs and CFs, and gaps in between

fs = 44100

fm1 = make_fm_chirp(1000, 5000, 0.01, fs)
cf1 = make_tone(5000, 0.005, fs)
fm2 = make_fm_chirp(5500, 9000, 0.01, fs)
cf2 = make_tone(8000, 0.005, fs)
gap = silence(0.005, fs)

synth_birdcall = np.concatenate((gap,
fm1, gap,
cf1, gap,
fm2, gap,
cf2,
gap))

w, s = visualise_call(synth_birdcall, fs, fft_size=64)

Let there be Noise

Any kind of field recording will have some form of noise. Each of the the segmentation methods is differently sus-
ceptible to noise, and it’s a good idea to test how well they can tolerate it. For starters, let’s just add white noise and
simulate different signal-to-noise ratios (SNR).

noisy_bird_call = synth_birdcall.copy()
noisy_bird_call += np.random.normal(0,10**(-10/20), noisy_bird_call.size)
noisy_bird_call /= np.max(np.abs(noisy_bird_call)) # keep sample values between +/- 1

26 Chapter 2. Let’s cut to the chase : some examples NOW

itsFM, Release 0.0.1

Estimate an approximate SNR by looking at the rms of the gaps to that of a song component

level_background = dB(rms(noisy_bird_call[gap.size]))

level_song = dB(rms(noisy_bird_call[gap.size:2*gap.size]))

snr_approx = level_song-level_background

print('The SNR is approximately: %f'%np.around(snr_approx))

w, s = visualise_call(noisy_bird_call, fs, fft_size=64)

We could try to run the segmentation + measurement on a noisy sound straight away, but this might lead to poor
measurements. Now, let’s bandpass the audio to remove the ambient noise outside of the song’s range.

Total running time of the script: (0 minutes 0.000 seconds)

2.2 Detailed Examples Gallery

This is a collection of detailed and more technically oriented examples illustrating the effect and role of various
parameters on the effectiveness of frequency tracking and CF-FM segmentation.

2.2.1 ‘Difficult’ example

The <insertname> package was mainly designed keeping horseshoe bat calls in mind. These calls are high-frequency
(>50kHz) and short (20-50ms) sounds which are quite unique in their structure. Many of the default parameter values
reflect the original dataset. In fact, many of the default parameters don’t even work for some of the example datasets
themselves! It should be no surprise that unpredictable things happen when segmentation and tracking is run with
default values.

This example will guide you through understanding the various parameters that can be tweaked and what effect they
actually have. It is not an exhaustive treatment of the implementation, but a ‘lite’ intro. For more details of course, the
original documentation should hopefully be helpful.

from matplotlib.lines import Line2D
import matplotlib.pyplot as plt
import itsfm
from itsfm.data import example_calls, all_wav_files

a chosen set of tricky calls to illustrate various points

tricky_rec = list(map(lambda X: '2018-08-17_23_115' in X, all_wav_files))
index = tricky_rec.index(True)
audio, fs = example_calls[index] # load the relevant example audio

2.2. Detailed Examples Gallery 27

itsFM, Release 0.0.1

Step 1: the right signal_level

In the given audio segment, the first step is to identify what is background and what is signal. The signal of interest is
identified as being above a particular dB rms, as calculated y a moving dB rms window of a user-defined window_size.

If we want high temporal resolution to segment out the call, we need a short window_size. Let’s try out 0.5 and 2ms
for now.

halfms_windowsize = int(fs*0.5*10**-3)
twoms_windowsize = halfms_windowsize*4
plt.figure()
ax = plt.subplot(211)
itsfm.plot_movingdbrms(audio, fs, window_size=halfms_windowsize)
itsfm.plot_movingdbrms(audio, fs, window_size=twoms_windowsize)

first_color = '#1f77b4'
second_color = '#ff7f0e'
custom_lines = [Line2D([0],[0], color=first_color),

Line2D([1],[1],color=second_color),]
ax.legend(custom_lines, ['0.5ms', '2ms'])
plt.ylabel('Moving dB rms')
plt.subplot(212, sharex=ax)
_ = itsfm.make_specgram(audio, fs);

The fact that the 0.5ms moving rms profile is so ‘rough’ is already a bad sign. The signal of interest is any region/s
which are above or equal to the signal_level. When the moving rms fluctuates so wildly, the relevant signal region

28 Chapter 2. Let’s cut to the chase : some examples NOW

itsFM, Release 0.0.1

may be hard to capture because it keeps going above and below the threshold - leading to many tiny ‘íslands’. Let’s
choose the 2ms window_size because it doesn’t fluctuate crazily and is also a relatively short time scale in comparison
the the signal duration. -40 dB rms seems to be a sensible value when we compare the approximate start and end times
of the signal with the dB rms profile.

keywords = {'segment_method':'pwvd',
'signal_level':-40,
'window_size':twoms_windowsize}

outputs = itsfm.segment_and_measure_call(audio, fs,**keywords)
output_inspector = itsfm.itsFMInspector(outputs, audio, fs)

output_inspector.visualise_geq_signallevel()

Out:

(<AxesSubplot:xlabel='Time, s', ylabel='Frequency, Hz'>, <AxesSubplot:>)

Let’s check the output as it is right now

output_inspector.visualise_cffm_segmentation()

2.2. Detailed Examples Gallery 29

itsFM, Release 0.0.1

Out:

(<AxesSubplot:>, <AxesSubplot:xlabel='Time, s', ylabel='Frequency, Hz'>)

Inspect initial outputs The CF-FM segmentation is clearly not correct. There’s FM component recognised at all - how
is this happening? The reason it’s not happening is likely because the fmrate has been misspecified or the frequency
profile wasn’t estimated correctly. Let’s view the frequency profile first.

output_inspector.visualise_frequency_profiles()

30 Chapter 2. Let’s cut to the chase : some examples NOW

itsFM, Release 0.0.1

Out:

(<AxesSubplot:xlabel='Time, s', ylabel='Frequency, Hz'>, <AxesSubplot:>)

The cleaned frequency profile seems to somehow ‘ignore’ the downward FM sweep in the call. Why is this happening?
The ‘flatness’ in the cleaned frequency profile is likely coming from the spike detection. Spikes in the frequency profile
are detected when the ‘accelaration’ of (the 2nd derivative) the frequency profile increases beyond a threshold. Let’s
check out the accelaration profile

output_inspector.visualise_accelaration()

2.2. Detailed Examples Gallery 31

itsFM, Release 0.0.1

Out:

(<AxesSubplot:ylabel='Accelaration, kHz/ms^{2}'>, <AxesSubplot:xlabel='Time, s',
→˓ylabel='Frequency, Hz'>, <AxesSubplot:>)

The accelaration profile matches this suspicion. When a spikey region is encountered in the frequency profile in the
pwvd frequency tracking - it backs up a bit and extrapolates the slope according to what’s just behind the spikey region.
The ‘length’ of this backing up in seconds is decided by the extrap_window, which is short for extrapolation
window. Let’s reduce the extrap_window and see if the frequency is tracked better.

keywords['extrap_window'] = 50*10**-6
outputs_refined = itsfm.segment_and_measure_call(audio, fs,**keywords)
out_refined_inspector = itsfm.itsFMInspector(outputs_refined, audio, fs)
out_refined_inspector.visualise_frequency_profiles()

32 Chapter 2. Let’s cut to the chase : some examples NOW

itsFM, Release 0.0.1

Out:

(<AxesSubplot:xlabel='Time, s', ylabel='Frequency, Hz'>, <AxesSubplot:>)

So, we’ve managed to get a much better tracking by telling the algorithm not to ‘backup’ too much to infer the trend
the frequency profile was heading in. It’s not perfect, but it does recover the fact that there is an FM region. Remember
this issue came up because of the weird reflection of the CF part that is of comparable intensity as the actual FM part
itself.

2.2. Detailed Examples Gallery 33

itsFM, Release 0.0.1

How the CF-FM segmentation works

CF-FM segmentation occurs through a multi step process. First the instantaneous frequency of the signal is estimated
at a sample-level resolution, the raw frequency profile - raw_fp. Then the raw_fp is refined as it can be quite noisy
because of well, noise, or abrupt changes in signal level across the sound.

Minor jumps will be corrected to give rise to the cleaned frequency profile - cleaned_fp. The cleaned_fp however, is a
very high-resolution look into the sound’s frequency profile. Even though the temporal resolution is high, the spectral
resolution is limited by the size of the pwvd_window (refer to the original docs here). This limited spectral resolution
means each sample will not have a unique value. For instance if the frequency of sound is increasing linearly with
time, the cleaned_fp may actually look like steps going up. These ‘steps’ cause issues while calculating the rate of
frequency modulation - fmrate, and so , the cleaned_fp is actually downsampled and then upsampled by interpolation.
This gives rise to the fitted frequency profile - fitted_fp.

The fitted_fp captures the local trends and doesn’t have the step like nature of cleaned_fp. If we were to actually
measure frequency modulation from cleaned_fp there’d be lots of 0 modulation regions and many very brief bursts
of FM regions wherever a ‘step’ rose or dropped. Thanks to the sample-wise unique values in fitted_fp we can now
calculate the local variation in frequency modulation across the sound.

Let’s now check the frequency profiles once more

out_refined_inspector.visualise_frequency_profiles()

34 Chapter 2. Let’s cut to the chase : some examples NOW

itsFM, Release 0.0.1

Out:

(<AxesSubplot:xlabel='Time, s', ylabel='Frequency, Hz'>, <AxesSubplot:>)

The raw and cleaned frequency profiles are very similar, though the ‘cleanliness’ in the cleaned_fp is visible especially
because the frequency profile doesn’ wildly jump around towards the end of the call. The fitted_fp also closely matches
the cleaned_fp though it seems to rise later and drop faster. This is because of the downsampling that happens to
estimate the fmrate. The rise time is a direct indicator of the downsampling factor, which samples the cleaned_fp at
periodic intervals, and is thus called sample_every. The sample_every parameter defaults to 1% of the input signal
duration. If the frequency profiles broadly match the actual call as seen coarsely on a spectrogram.

2.2. Detailed Examples Gallery 35

itsFM, Release 0.0.1

Step 2: Check the fmrate profile

CF and FM parts of a call are segmented based on the rate of frequency modulation they show. The fmrate is a np.array
with the estimated frequency modulation rate in kHz/ms. Yes, pay attention to the units, it’s not kHz/s, but kHz/ms!
Let’s take a look at the FM rate profile for this sound.

out_refined_inspector.visualise_fmrate()

Out:

(<AxesSubplot:ylabel='FM rate, kHz/ms'>, <AxesSubplot:xlabel='Time, s', ylabel=
→˓'Frequency, Hz'>, <AxesSubplot:>)

Let’s compare this fmrate profile with the final CF-FM segmentation.

out_refined_inspector.visualise_cffm_segmentation()

36 Chapter 2. Let’s cut to the chase : some examples NOW

itsFM, Release 0.0.1

Out:

(<AxesSubplot:>, <AxesSubplot:xlabel='Time, s', ylabel='Frequency, Hz'>)

Something’s odd – even though the FM rate seems to be close to zero near the actual FM parts, parts of it are still
being classified as FM!! What’s happening. Let’s take a closer look at the FM rate profile, but zoom in so the y-axis
is more limited. Let’s also overlay the CF-FM segmentation results over this.

seg_out, call_parts, msmts = outputs_refined
cf, fm, info = seg_out

w,s,a = out_refined_inspector.visualise_fmrate()
w.set_ylim(0,5)
t_min, t_max = 0.01, 0.02
w.set_xlim(t_min, t_max)
s.set_xlim(t_min, t_max)
a.set_xlim(t_min, t_max)
w.plot()
itsfm.make_waveform(cf*4,fs)
itsfm.make_waveform(fm*4,fs)
plt.tight_layout()

2.2. Detailed Examples Gallery 37

itsFM, Release 0.0.1

From this you can clearly see that the FM part correspond to tiny peaks in the fmrate which reach around 1 kHz/ms. It
may of course be no surprise once you know the default fmrate_threshold is 1 kHz/ms. This rate doesn’ make sense
for bat call FM portions as they have much high frequency modulation rates. The easy way to estimate the relevant
fmrate_threshold is to eyeball the start and end frequencies of a call part and calculate the fm rate!

Step 3: Set a relevant fmrate_threshold

For this example call any FM rate above 0.5kHz/ms will allow a sensible segmentation of the CF and FM parts. Lets
set it more conservatively at 2kHz/ms, this will reduce false positives. In general, for this particular call type, the FM
sweep has an approximate rate of 5-6kHz/ms, and so we should definitely be able to pick up the FM region with a
threshold of 2kHz/ms.

add an additional keyword argument
keywords['fmrate_threshold'] = 2.0 # kHz/ms

output_newfmr = itsfm.segment_and_measure_call(audio, fs,**keywords)

out_newfmr_insp = itsfm.itsFMInspector(output_newfmr, audio, fs)
out_newfmr_insp.visualise_cffm_segmentation()

38 Chapter 2. Let’s cut to the chase : some examples NOW

itsFM, Release 0.0.1

Out:

(<AxesSubplot:>, <AxesSubplot:xlabel='Time, s', ylabel='Frequency, Hz'>)

Summary

This tutorial exposed some of the messy details behind the PWVD frequency tracking. In most cases, I hope you
won’t need to think so much about the parameter choices. However, some basic playing around will definitely be
necessary each time you’re handling a new type of sound or recording type. Hopefully, this has either allowed you to
get a glimpse into the system. Do let me know if there’s something (or everythin) is confusing, and not clear!

Total running time of the script: (0 minutes 14.127 seconds)

2.3 itsfm without coding

Not so comfortable coding in Python? There is an option to use itsfm by specifying the parameters you’d like to
use for a segment and measure run. This means the sound will be segmented into FM and CF and measurements
(custom/inbuilt) will be done on the detected sound parts.

2.3. itsfm without coding 39

itsFM, Release 0.0.1

2.3.1 Running a batch file analysis

Remember to install the package as outlined in the main page. Running a batch file analysis is as simple as typing the
following command into the command line interface of your OS. Remember to activate your conda/virtual environment
if you’re using one before!

python -m itsfm -batchfile path_to_your_batchfile_here.csv

Outputs from a batch file analysis

1. Diagnostic plots : The batch file analysis will produce a pdf for each audio snippet processed. This pdf will
have a series of diagnostic plots in each page for later inspection.

2. Measurement file : A common long-format measurement csv file will be output. Each row in the file corresponds
to one segmented region and each column corresponds to the default/custom measurements run on the segments.

The batch file

The batch file is a .csv file with the following layout

The basic idea is to give the same inputs that you would use while calling the itsfm.
segment_and_measure_call function. All non-default arguments can be input as columns in the batchfile.
The names of the columns must match the keyword used in a function call.

A simple batch file

Note : if a keyword argument is not expicitly specified as a column with filled in values, the default value for this
argument will be used.

1. audio_path : the path to the audio file

2. start : What time into the audio file should the sound be read? Defaults to 0.

3. stop : When does the relevant sound segment end? Defaults to the duration of the file.

4. channel : integer value. If file is a multichannel file, then choose relevant channel. Note : channel numbers
start from 1 onwards.

5. segment_method : the CF-FM segmentation method to be used.

6. window_size : integer value. Number of samples to be used to calculate the moving dB rms window.

7. signal_level : float <=0. The value in dB rms (re 1) that defines a region of analysable signal.

40 Chapter 2. Let’s cut to the chase : some examples NOW

itsFM, Release 0.0.1

A batch file is extensible

Depending on the extent of control you’d like to have on the analysis, you can add more arguments to control the
output. For instance, take a look at the batch file below. This shows an extension of the previous batch file. In this
particular batch file there are a whole bunch of other

• fmrate_threshold : float>0. The fm rate above which a region is consdered FM in kHz/ms.

• max_acc : float>0. The maximum acceleration that is allowed in the frequency profile. The acceleration is a
proxy for how rough or spiky the frequency profile in a particular region. Values closer to 0 are better.

• tfr_cliprange : float>0. The maximum dynamic range allowed in a time-frequency representation in dB.
See itsfm.frequency_tracking.generate_pwvd_frequency_profile

• fft_size : int>0. The number of FFT samples used to generate spectrograms in the final visualisations.

• measurements : str. accepts a simple list with comma separated inbuilt function names. The supported
inbuilt measurement functions can be be seen by typing help(itsfm.measurement_functions)

Each row is independent

It is possible to use a combination of default and non-default values. Whether doing so is advisable or not is a situation-
based call. For instance, in the extended batch file above, a non-default fft_size is used for the first file, and the
other files have above have a default value.

Skip a row

There may be times when the raw data is truly bad (or empty, or missing) and you want to skip a particular row in the
batchfile. This can be done by add a ‘skip’ column, and adding True in that particular row. Remember to fill out the
rest of the rows with DEFAULT.

Run only a single row

To quickly test which parameters work best, you can also just run single examples by using the one_row argument.
This approach allows you to troubleshoot a single problematic audio clip and quickly change the parameters for that
file until it makes sense or works. The example below will run the 11th row in the batchfile.

$ python -m itsfm -batchfile template_batchfile.csv -one_row 10

Running parts of a batchfile

Stuff happens and an analysis run can stop anytime as it runs throug the batchfile because some of the parameters don’t
make sense. To continue from a desired row or run only a selected set of rows you can use the -from and -till
arguments.

$ python -m itsfm -batchfile template_batchfile.csv -from 10

The example above will run the analysis from the 11th row and proceed till the last row of the batchfile.

2.3. itsfm without coding 41

itsFM, Release 0.0.1

$ python -m itsfm -batchfile template_batchfile.csv -till 10

The example above will run the analysis from the 1st till 11th row and proceed till the last row of the batchfile.

$ python -m itsfm -batchfile template_batchfile.csv -from 5 -till 10

The example above runs itsfm analysis from the 6th-11th rows of a batchfile.

Measurement file already exists

It is very likely that you may get this error message on trying to run a batchfile after the first run:

$ ValueError: The file: measurements_basic_batchfile.csv already exists- please move
→˓it elsewhere or rename it!

This is because only one measurement file is allowed to be there in the folder where batchfile processing is being done.
This feature prevents the accidental overwriting of results! To prevent this error from appearing again, delete, rename
or move the current measurements file.

2.3.2 Suppressing the ‘..already exists’ error

It can be irritating to encounter the ‘. . . already exists’ error while trying to maintain a fast back and forth between
results and parameter values. To prevent this error from happening - just use the -del_measurement argument.
Set it to True and any file starting with measurement will be deleted before the actual itsfm run.

Warning : use this being aware that this involves file deletion! It’s fine if you plan to run the whole batchfile at one
stretch later anyway.

$ python -m itsfm -batchfile template_batchfile.csv -batchfile yourbatchfilehere.csv -
→˓del_measurement True

Which argument/s can be specified?

The exact arguments that can be specified depend on which level you’d like to apply control, and therefore the relevant
functions need to be looked up. For instance, if I wanted to make sure the frequency profile of a sound was sampled
every 1ms to generate the FM rate profile. I’d look up the itsfm.segment.whole_audio_fmrate source
code to find the sample_every optional argument. A column names sample_every will allow the custom definition
of a downsampling intensity for that row. In most cases the approach aligned above should work, especially if the
parameter value is a float. Results may vary if the type of the csv file cell entry are mis-interpreted.

2.4 Accuracy Reports

This page has a collection of examples which illustrate the accuracy to which itsfm does the different things its sup-
posed to do. As of now I’ve only added the accuracy report for CF-FM calls. Do make a pull request with accuracy
reports for your sounds of interest!

42 Chapter 2. Let’s cut to the chase : some examples NOW

itsFM, Release 0.0.1

2.4.1 CF-FM call segmentation accuracy

This page will illustrate the accuracy with which itsfm can segment CF-FM parts of a CF-FM call. To see what a
CF-FM call looks like check out the bat-call example in the ‘Basic Examples’ page.

The synthetic data has already been generated and run with the segment_and_measure function, and now we’ll
compare the accuracy with which it has all happened.

A CF-FM bat call typically has three parts to it, 1) an ‘up’ FM, where the frequency of the call increases, 2) a ‘CF’ part,
where the frequency is stable, and then 3) a ‘down’ FM, where the frequency drops. The synthetic data is basically a
set of CF-FM calls with a combination of upFM, downFM and CF part durations, bandwidths,etc.

Here we will only be seeing if the durations of each of the segment parts have been picked up properly or not. We
will not be performing any accuracy assessments on the exact parameters (eg. peak frequency, rms, etc) because it is
assumed that if the call parts can be identified by their durations then the measurements will in turn be as expected.

There is no silence in the synthetic calls, and no noise too. This is the situation which should provide the highest
accuracy.

What happened before

To see more on the details of the generation and running of the synthetic data see the modules CF/FM call segmentation
and Generating the CF-FM synthetic calls

import itsfm
import matplotlib.pyplot as plt
plt.rcParams['agg.path.chunksize'] = 10000
import numpy as np
import pandas as pd
import seaborn as sns
import tqdm

obtained = pd.read_csv('obtained_pwvd_horseshoe_sim.csv')
synthesised = pd.read_csv('horseshoe_test_parameters.csv')

Let’s look at the obtained regions and their durations

obtained

We can see the output has each CF/FM region labelled by the order in which they’re found. Let’s re-label these to
match the names of the synthesised call parameter dataframe. ‘upfm’ is fm1, ‘downfm’ is fm2.

obtained.columns = ['call_number','cf_duration',
'upfm_duration', 'downfm_duration', 'other']

Let’s look at the synthetic call parameters. There’s a bunch of parameters that’re not interesting for this accuracy
exercise and so let’s remove them

synthesised

synthesised.columns

synth_regions = synthesised.loc[:,['cf_duration', 'upfm_duration','downfm_duration']]
synth_regions['other'] = np.nan
synth_regions['call_number'] = obtained['call_number']

2.4. Accuracy Reports 43

itsFM, Release 0.0.1

Comparing the synthetic and the obtained results

We have the two datasets formatted properly, now let’s compare the accuracy of itsfm.

accuracy = obtained/synth_regions
accuracy['call_number'] = obtained['call_number']

Overall accuracy of segmentation:

accuracy_reformat = accuracy.melt(id_vars=['call_number'],
var_name='Region type',
value_name='Accuracy')

accuracy_reformat = accuracy_reformat[accuracy_reformat['Region type']!='other']

plt.figure()

ax = sns.boxplot(x='Region type', y = 'Accuracy',
data=accuracy_reformat)

ax = sns.swarmplot(x='Region type', y = 'Accuracy',
data=accuracy_reformat,
alpha=0.5)

Out:

44 Chapter 2. Let’s cut to the chase : some examples NOW

itsFM, Release 0.0.1

/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-
→˓packages/seaborn/categorical.py:1296: UserWarning: 75.3% of the points cannot be
→˓placed; you may want to decrease the size of the markers or use stripplot.
warnings.warn(msg, UserWarning)

/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-
→˓packages/seaborn/categorical.py:1296: UserWarning: 46.0% of the points cannot be
→˓placed; you may want to decrease the size of the markers or use stripplot.
warnings.warn(msg, UserWarning)

/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-
→˓packages/seaborn/categorical.py:1296: UserWarning: 40.7% of the points cannot be
→˓placed; you may want to decrease the size of the markers or use stripplot.
warnings.warn(msg, UserWarning)

Peak-percentage method accuracy

Now let’s take a look at the peak percentage method’s accuracy

obtained_pkpct = pd.read_csv('obtained_pkpct_horseshoe_sim.csv')

obtained_pkpct.head()

It can clearly be seen that there are some calls with multiple segments detected. This multiplicity of segments typically
results from false positive detections, where the CF-FM ratio jumps above 0 spuriously for a few samples. Let’s take
a look at some of these situations.

def identify_valid_segmentations(df):
'''
Identifies if a segmentation output has valid (numeric)
entries for cf1, fm1, fm2, and NaN for all other columns.

Parameters

df : pd.DataFrame

with at least the following column names, 'cf1','fm1','fm2'

Returns

valid_segmentation: bool.

True, if the segmentation is valid.
'''
all_columns = df.columns
target_columns = ['cf1','fm1','fm2']
rest_columns = set(all_columns)-set(target_columns)
rest_columns = rest_columns - set(['call_number'])

valid_cf1fm1fm2 = lambda row, target_columns: np.all([~np.isnan(row[each]) for
→˓each in target_columns])

all_otherrows_nan = lambda row, rest_columns: np.all([np.isnan(row[each]) for
→˓each in rest_columns])

all_valid_rows = np.zeros(df.shape[0],dtype=bool)
for i, row in df.iterrows():

all_valid_rows[i] = np.all([valid_cf1fm1fm2(row, target_columns),
all_otherrows_nan(row, rest_columns)])

return all_valid_rows

(continues on next page)

2.4. Accuracy Reports 45

itsFM, Release 0.0.1

(continued from previous page)

calls_w_3segs = identify_valid_segmentations(obtained_pkpct)

print(f'{np.sum(calls_w_3segs)/calls_w_3segs.size} % of calls have 3 segments')

Out:

0.9444444444444444 % of calls have 3 segments

6% of calls don’t have 3 components - let’s remove these poorly segmented calls and quantify their segmentation
accuracy.

pkpct_well_segmented = obtained_pkpct.loc[calls_w_3segs,:]
pkpct_well_segmented = pkpct_well_segmented.drop(['cf2','fm3','fm4'],axis=1)

pkpct_well_segmented.columns = ['call_number','cf_duration',
'upfm_duration', 'downfm_duration', 'other']

pkpct_accuracy = pkpct_well_segmented/synth_regions.loc[calls_w_3segs,:]

Overall accuracy of segmentation:
pkpct_accuracy_reformat = pkpct_accuracy.melt(id_vars=['call_number'],

var_name='Region type',
value_name='Accuracy')

pkpct_accuracy_reformat = pkpct_accuracy_reformat[pkpct_accuracy_reformat['Region type
→˓']!='other']

plt.figure()
ax = sns.violinplot(x='Region type', y = 'Accuracy',

data=pkpct_accuracy_reformat)

ax = sns.swarmplot(x='Region type', y = 'Accuracy',
data=pkpct_accuracy_reformat,
alpha=0.5)

46 Chapter 2. Let’s cut to the chase : some examples NOW

itsFM, Release 0.0.1

Out:

/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-
→˓packages/seaborn/categorical.py:1296: UserWarning: 51.6% of the points cannot be
→˓placed; you may want to decrease the size of the markers or use stripplot.
warnings.warn(msg, UserWarning)

/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-
→˓packages/seaborn/categorical.py:1296: UserWarning: 19.0% of the points cannot be
→˓placed; you may want to decrease the size of the markers or use stripplot.
warnings.warn(msg, UserWarning)

/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-
→˓packages/seaborn/categorical.py:1296: UserWarning: 26.8% of the points cannot be
→˓placed; you may want to decrease the size of the markers or use stripplot.
warnings.warn(msg, UserWarning)

2.4. Accuracy Reports 47

itsFM, Release 0.0.1

Putting it all together: PWVD vs peak percentage

pwvd_accuracy = accuracy_reformat.copy()
pwvd_accuracy['method'] = 'pwvd'

pkpct_accuracy = pkpct_accuracy_reformat.copy()
pkpct_accuracy['method'] = 'pkpct'

both_accuracy = pd.concat([pwvd_accuracy, pkpct_accuracy])
both_accuracy['combined_id'] = both_accuracy['Region type']+both_accuracy['method']

grouped_accuracy = both_accuracy.groupby(['Region type','method'])

plt.figure(figsize=(8,6))
ax = sns.swarmplot(x='Region type', y = 'Accuracy',

data=both_accuracy, hue='method',hue_order=["pwvd", "pkpct"],
dodge=True,alpha=0.5, s=3)

ax2 = sns.violinplot(x='Region type', y = 'Accuracy',
data=both_accuracy, hue='method',hue_order=["pwvd", "pkpct"],
dodge=True,alpha=0.5, s=2.5)

ax2.legend_.remove()
handles, labels = ax2.get_legend_handles_labels() # thanks Ffisegydd@ https://
→˓stackoverflow.com/a/35539098
l = plt.legend(handles[0:2], ['PWVD','Peak percentage'], loc=2, fontsize=11,

borderaxespad=0., frameon=False)

plt.xticks([0,1,2],['CF','iFM','tFM'], fontsize=11)
plt.xlabel('Call component',fontsize=12);plt.ylabel('Accuracy of segmentation, $\\frac
→˓{obtained}{actual}$',fontsize=12);
plt.yticks(fontsize=11)
plt.ylim(0,1.5)
plt.tight_layout()
plt.savefig('pwvd-pkpct-comparison.png')

48 Chapter 2. Let’s cut to the chase : some examples NOW

itsFM, Release 0.0.1

Out:

/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-
→˓packages/seaborn/categorical.py:1296: UserWarning: 60.5% of the points cannot be
→˓placed; you may want to decrease the size of the markers or use stripplot.
warnings.warn(msg, UserWarning)

/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-
→˓packages/seaborn/categorical.py:1296: UserWarning: 37.3% of the points cannot be
→˓placed; you may want to decrease the size of the markers or use stripplot.
warnings.warn(msg, UserWarning)

/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-
→˓packages/seaborn/categorical.py:1296: UserWarning: 32.1% of the points cannot be
→˓placed; you may want to decrease the size of the markers or use stripplot.
warnings.warn(msg, UserWarning)

/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-
→˓packages/seaborn/categorical.py:1296: UserWarning: 11.1% of the points cannot be
→˓placed; you may want to decrease the size of the markers or use stripplot.
warnings.warn(msg, UserWarning)

/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-
→˓packages/seaborn/categorical.py:1296: UserWarning: 31.2% of the points cannot be
→˓placed; you may want to decrease the size of the markers or use stripplot.
warnings.warn(msg, UserWarning)

/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-
→˓packages/seaborn/categorical.py:1296: UserWarning: 19.6% of the points cannot be
→˓placed; you may want to decrease the size of the markers or use stripplot.
warnings.warn(msg, UserWarning)

2.4. Accuracy Reports 49

itsFM, Release 0.0.1

What are the 95%ile limits of the accuracy?

accuracy_ranges = grouped_accuracy.apply(lambda X: np.nanpercentile(X['Accuracy'],[2.
→˓5,97.5]))
accuracy_ranges

Out:

Region type method
cf_duration pkpct [0.8994, 1.05945]

pwvd [0.9392, 1.0218500000000001]
downfm_duration pkpct [0.648, 1.348]

pwvd [0.8867499999999999, 1.208]
upfm_duration pkpct [0.624, 1.2999999999999998]

pwvd [0.9179999999999999, 1.2416]
dtype: object

Troubleshooting the ‘bad’ fixes - what went wrong?

Some bad PWVD identifications

As we can see there are a few regions where the accuracy is very low, let’s investigate which of these calls are doing
badly.

poor_msmts = accuracy[accuracy['cf_duration']<0.5].index

Now, let’s troubleshooot this particular set of poor measurements fully.

simcall_params = pd.read_csv('horseshoe_test_parameters.csv')
obtained_params = pd.read_csv('obtained_pwvd_horseshoe_sim.csv')

obtained_params.loc[poor_msmts,:]

There are two CF regions being recognised, one of them is just extremely short. Where is this coming from? Let’s
take a look at the actual frequency tracking output, by re-running the `itsfm` routine once more:

import h5py

f = h5py.File('horseshoe_test.hdf5', 'r')

fs = float(f['fs'][:])

parameters = {}
parameters['segment_method'] = 'pwvd'
parameters['window_size'] = int(fs*0.001)
parameters['fmrate_threshold'] = 2.0
parameters['max_acc'] = 10
parameters['extrap_window'] = 75*10**-6

raw_audio = {}

for call_num in tqdm.tqdm(poor_msmts.to_list()):
synthetic_call = f[str(call_num)][:]
raw_audio[str(call_num)] = synthetic_call
output = itsfm.segment_and_measure_call(synthetic_call, fs, **parameters)

(continues on next page)

50 Chapter 2. Let’s cut to the chase : some examples NOW

itsFM, Release 0.0.1

(continued from previous page)

seg_output, call_parts, measurements= output

save the long format output into a wide format output to
allow comparison
sub = measurements[['region_id', 'duration']]
sub['call_number'] = call_num
region_durations = sub.pivot(index='call_number',
columns='region_id', values='duration')
obtained.append(region_durations)

f.close()

call_num = str(poor_msmts[0])

plt.figure()
plt.subplot(211)
plt.specgram(raw_audio[call_num], Fs=fs)
plt.plot(np.linspace(0,raw_audio[call_num].size/fs,raw_audio[call_num].size),

seg_output[2]['raw_fp'])
plt.plot(np.linspace(0,raw_audio[call_num].size/fs,raw_audio[call_num].size),

seg_output[2]['fitted_fp'])
plt.plot(np.linspace(0,raw_audio[call_num].size/fs,raw_audio[call_num].size),

seg_output[0]*4000,'w')
plt.plot(np.linspace(0,raw_audio[call_num].size/fs,raw_audio[call_num].size),

seg_output[1]*4000,'k')
plt.subplot(212)
plt.plot(raw_audio[call_num])

plt.figure()
plt.subplot(311)
plt.plot(np.linspace(0,raw_audio[call_num].size/fs,raw_audio[call_num].size),

seg_output[2]['raw_fp'])
plt.subplot(312)
plt.plot(np.linspace(0,raw_audio[call_num].size/fs,raw_audio[call_num].size),

seg_output[2]['fmrate'])
#plt.plot(np.linspace(0,raw_audio[call_num].size/fs,raw_audio[call_num].size),
seg_output[0]*5,'k',label='CF')
#plt.plot(np.linspace(0,raw_audio[call_num].size/fs,raw_audio[call_num].size),
seg_output[1]*5,'r', label='FM')
plt.hlines(2, 0, raw_audio[call_num].size/fs, linestyle='dotted', alpha=0.5,

label='2kHz/ms fm rate')
plt.legend()
plt.subplot(313)
plt.plot(raw_audio[call_num])

2.4. Accuracy Reports 51

itsFM, Release 0.0.1

•

52 Chapter 2. Let’s cut to the chase : some examples NOW

itsFM, Release 0.0.1

•

Out:

0%| | 0/2 [00:00<?, ?it/s]
50%|##### | 1/2 [00:01<00:01, 1.01s/it]

100%|##########| 2/2 [00:02<00:00, 1.01s/it]
100%|##########| 2/2 [00:02<00:00, 1.01s/it]

[<matplotlib.lines.Line2D object at 0x7f40e96ac190>]

Making some corrections to the PWVD output

Here, we can see that the ‘error’ is that the FM rate is very slightly below the 2 kHz/ms FM rate, and thus appears as a
false CF region. This slight drop in FM rate is also because of edge effects. The frequency profile correction methods
in place were able to recognise the odd spike in frequency profile and interpolate between two regions with reliable
frequency profiles. This interpolation thus lead to a slight drop in the FM rate.

Considering that the CF measurement is actually there, but labelled as CF2, let’s correct this labelling error and then
see the final accuracy. We will not attempt to compensate for this error by adjusting the iFM duration here.

corrected_obtained = obtained_params.copy()
for each in poor_msmts:

corrected_obtained.loc[each,'cf1'] = corrected_obtained.loc[each,'cf2']
corrected_obtained.loc[each,'other'] = np.nan

corrected_obtained = corrected_obtained.loc[:,corrected_obtained.columns!='cf2']

(continues on next page)

2.4. Accuracy Reports 53

itsFM, Release 0.0.1

(continued from previous page)

corrected_obtained.columns = ['call_number','cf_duration',
'upfm_duration', 'downfm_duration', 'other']

corrected_accuracy = corrected_obtained/synth_regions
corrected_accuracy['call_number'] = corrected_obtained['call_number']
corrected_accuracy_reformat = corrected_accuracy.melt(id_vars=['call_number'],

var_name='Region type',
value_name='Accuracy')

corrected_accuracy_reformat = corrected_accuracy_reformat.loc[corrected_accuracy_
→˓reformat['Region type']!='other',:]

plt.figure()
ax = sns.boxplot(x='Region type', y = 'Accuracy',

data=corrected_accuracy_reformat)

ax = sns.swarmplot(x='Region type', y = 'Accuracy',
data=corrected_accuracy_reformat,
alpha=0.5)

Out:

/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-
→˓packages/seaborn/categorical.py:1296: UserWarning: 47.8% of the points cannot be
→˓placed; you may want to decrease the size of the markers or use stripplot.

(continues on next page)

54 Chapter 2. Let’s cut to the chase : some examples NOW

itsFM, Release 0.0.1

(continued from previous page)

warnings.warn(msg, UserWarning)
/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-
→˓packages/seaborn/categorical.py:1296: UserWarning: 14.5% of the points cannot be
→˓placed; you may want to decrease the size of the markers or use stripplot.
warnings.warn(msg, UserWarning)

/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-
→˓packages/seaborn/categorical.py:1296: UserWarning: 19.8% of the points cannot be
→˓placed; you may want to decrease the size of the markers or use stripplot.
warnings.warn(msg, UserWarning)

Total running time of the script: (0 minutes 8.912 seconds)

2.4.2 Running CF-FM call segmentation

Here we will run the segment_and_measure function and store the results of how long each Cf/FM segment is.

Dataset creation

The synthetic dataset has already been created in a separate module. See ‘Generating the CF-FM synthetic calls’ in
the main page.

It can take long

We’re running a few hundred synthetic audio clips with a few seconds (1-10s) needed per iteration. This could mean,
it might take a while(5,10 or more minutes)!

import h5py
import itsfm
import pandas as pd
from tqdm import tqdm

Now, let’s load each synthetic call and proceed to save the results from the PWVD and peak-percentage based methods.

FM rate based segmentation

obtained = []

f = h5py.File('horseshoe_test.hdf5', 'r')
synthesised = pd.read_csv('horseshoe_test_parameters.csv')

fs = float(f['fs'][:])

parameters = {}
parameters['segment_method'] = 'pwvd'
parameters['window_size'] = int(fs*0.001)
parameters['fmrate_threshold'] = 2.0
parameters['max_acc'] = 10
parameters['extrap_window'] = 75*10**-6

for call_num in tqdm(range(synthesised.shape[0])):

(continues on next page)

2.4. Accuracy Reports 55

itsFM, Release 0.0.1

(continued from previous page)

synthetic_call = f[str(call_num)][:]
output = itsfm.segment_and_measure_call(synthetic_call, fs, **parameters)

seg_output, call_parts, measurements= output
save the long format output into a wide format output to
allow comparison
sub = measurements[['region_id', 'duration']]
sub['call_number'] = call_num
region_durations = sub.pivot(index='call_number',

columns='region_id', values='duration')
obtained.append(region_durations)

all_obtained = pd.concat(obtained)

all_obtained.to_csv('obtained_pwvd_horseshoe_sim.csv')

Peak-percentage based segmentation

pkpctg_parameters = {}
pkpctg_parameters['segment_method'] = 'peak_percentage'
pkpctg_parameters['peak_percentage'] = 0.99
pkpctg_parameters['window_size'] = 125
pkpctg_parameters['double_pass'] = True

pkpct_obtained = []

for call_num in tqdm(range(synthesised.shape[0])):
synthetic_call = f[str(call_num)][:]
output = itsfm.segment_and_measure_call(synthetic_call, fs, **pkpctg_parameters)

seg_output, call_parts, measurements= output
save the long format output into a wide format output to
allow comparison
sub = measurements[['region_id', 'duration']]
sub['call_number'] = call_num
region_durations = sub.pivot(index='call_number',

columns='region_id', values='duration')
pkpct_obtained.append(region_durations)

f.close()

pk_pctage = pd.concat(pkpct_obtained)

pk_pctage.to_csv('obtained_pkpct_horseshoe_sim.csv')

Total running time of the script: (0 minutes 0.000 seconds)

56 Chapter 2. Let’s cut to the chase : some examples NOW

itsFM, Release 0.0.1

2.4.3 Generating the CF-FM synthetic calls

Module that creates the data for accuracy testing horseshoe bat type calls

import h5py
from itsfm.simulate_calls import make_cffm_call
import numpy as np
import pandas as pd
import scipy.signal as signal
from tqdm import tqdm

cf_durations = [0.005, 0.010, 0.015]
cf_peakfreq = [40000, 60000, 90000]
fm_durations = [0.001, 0.002]
fm_bw = [5000, 10000, 20000]

all_combinations = np.array(np.meshgrid(cf_peakfreq, cf_durations,
fm_bw,fm_durations,
np.flip(fm_bw),np.flip(fm_durations)))

all_params = all_combinations.flatten().reshape(6,-1).T

col_names = ['cf_peak_frequency', 'cf_duration',
'upfm_bw', 'upfm_duration',
'downfm_bw', 'downfm_duration']

parameter_space = pd.DataFrame(all_params, columns=col_names)
parameter_space['upfm_terminal_frequency'] = parameter_space['cf_peak_frequency'] -
→˓parameter_space['upfm_bw']
parameter_space['downfm_terminal_frequency'] = parameter_space['cf_peak_frequency'] -
→˓parameter_space['downfm_bw']

parameter_columns = ['cf_peak_frequency', 'cf_duration',
'upfm_terminal_frequency', 'upfm_duration',
'downfm_terminal_frequency', 'downfm_duration']

all_calls = {}
for row_number, parameters in tqdm(parameter_space.iterrows(),

total=parameter_space.shape[0]):

cf_peak, cf_durn, upfm_terminal, upfm_durn, downfm_terminal, downfm_durn =
→˓parameters[parameter_columns]

call_parameters = {'cf':(cf_peak, cf_durn),
'upfm':(upfm_terminal, upfm_durn),
'downfm':(downfm_terminal, downfm_durn),
}

fs = 250*10**3 # 500kHz sampling rate
synthetic_call, _ = make_cffm_call(call_parameters, fs)
synthetic_call *= signal.tukey(synthetic_call.size, 0.1)
all_calls[row_number] = synthetic_call

now save the data into an hdf5 file
with h5py.File('horseshoe_test.hdf5','w') as f:

for index, audio in all_calls.items():
f.create_dataset(str(index), data=audio)

f.create_dataset('fs', data=np.array([fs]))
parameter_space.to_csv('horseshoe_test_parameters.csv')

2.4. Accuracy Reports 57

itsFM, Release 0.0.1

Total running time of the script: (0 minutes 0.000 seconds)

58 Chapter 2. Let’s cut to the chase : some examples NOW

CHAPTER

THREE

WHAT THE PACKAGE DOES:

1. Identify sounds as being constant frequency or frequency modulated

2. The ‘pwvd’ segmentation method allows a sample-level frequency estimation, the ‘frequency profile’ of the
sound

3. Generates an FM rate profile over the sound

4. Performs basic outlier detection

59

itsFM, Release 0.0.1

60 Chapter 3. What the package does:

CHAPTER

FOUR

WHAT THE PACKAGE DOES NOT :

1. Perform any kind of pattern detection/classification. The frequency profile of a sound is generated using a
percentile based threshold on each slice of the underlying Pseudo Wigner-Ville distribution.

2. Handle complex and reverberant sounds. Sounds that are multi-component, ie, with multiple harmonics or with
variation in intensity of harmonics across the recording won’t fare very well.

3. Separate overlapping sounds

61

itsFM, Release 0.0.1

62 Chapter 4. What the package does not:

CHAPTER

FIVE

INSTALLATION

This is a pre-PyPi version of the package. The easiest way to install the package is to head to this page, and down-
load/clone the repository. Go into the downloaded folder and type python setup.py install.

63

https://github.com/thejasvibr/itsfm.git

itsFM, Release 0.0.1

64 Chapter 5. Installation

CHAPTER

SIX

WHAT THE PACKAGE COULD DO WITH (FUTURE FEATURE IDEAS):

1. A sensible way to deal with edges of the signals. Right now the instantaneous frequencies suffer from spikes
caused by bad instantaneous frequency estimates at the edges in the pseudo-wigner ville distribution method.

2. Informed frequency tracking (eg. Viterbi path or similar) in multi-harmonic sounds. Right now the frequency
profile of a sound is selected by independently choosing the first peak in the time-frequency slice. This prevents
a sensible tracking of frequency because even slight variations in harmonic intensities over a sound can cause
the peak frequency to jump almost an octave sometimes!

3. More time-frequency representation implementations and the signal cleaning methods associated with them.

65

itsFM, Release 0.0.1

66 Chapter 6. What the package could do with (future feature ideas):

CHAPTER

SEVEN

WHY IS EVERYTHING IN THIS CODEBASE A FUNCTION? HAVE YOU
HEARD OF CLASSES?

This is the author’s first Python package, and the author admits it may not be the most elegant implementation. The
author’s previous experience (or lack thereof) working with classes may have left some bad memories :P.However the
author also admits that many things in the package might have been less cumbersome with the use of classes, and
plans to implement it in due time.

67

itsFM, Release 0.0.1

68 Chapter 7. Why is everything in this codebase a function? Have you heard of classes?

CHAPTER

EIGHT

WHERE TO GET HELP

8.1 Common Errors

Here are the most common errors and the probable causes for them. When I use the word ‘bad’ here, I mean it in
the sense of bad for that particular signal! Especially while analysing bioacoustic recordings, a parameter value that
works for one recording may not necessarily work for another one!

8.1.1 1. Bad signal_level

$ ValueError: No regions above signal level found!

Easy, reduce the signal_level and try again.

8.1.2 2. Bad signal_level

$ IndexError: only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`)
→˓and integer or boolean arrays are valid indices

This region is caused by a very small region of the signal being selected. The PWVD transform works by choosing
a small window of samples on the left and right of the current sample. If the region above signal_level is very small,
and not greater than this small window of samples this error is raised. By default, the isfm window size is set to the
numebr of samples corresponding to 1ms.

Alter signal_level or window_size to get a more continuous moving dB rms profile. See below also.

8.1.3 3. Bad signal_level or window_size

$ ValueError: Shape of array too small to calculate a numerical gradient, at least
→˓(edge_order + 1) elements are required

The actual signal in an audio file is detected by the segment of audio that’s above a user-defined signal_level. When
the signal_level is set poorly or results in very short chunks of audio (<3 samples), then typically this error is thrown:

This means there’s a very short audio segment that’s above the signal_level. This typically happens because the moving
dB rms profile is too spiky, which means the signal level fluctuates very quickly above and below the threshold. The
new signal_level is best re-set after inspecting the moving dB rms profile.

The two options to fix this error are:

1. increase window_size to get a smoother moving dB rms profile

69

itsFM, Release 0.0.1

2. set a new signal_level which will make sure the moving dB rms profile is above it and matches the duration of
the original signal

8.1.4 4. Bad signal_level or window_size

The FM rate profile of a sound is calculated by down-sampling the cleaned frequency profile. The down-sampling
is done by taking a sample every now and then as defined byt the inter-sample duration. The inter-sample duration
typically defaults to 1 percent of the frequency profiles length. When a bad signal level is given, there can be very
short audio segments that are detected, and thus when the FM rate needs to be calculated, things break because 1% of
an already very short sound may be less than the inter-sample duration itself – and therefore this message.

$ ValueError: The suggested duration 3.16e-06 is less than
→˓the inter-sample distance (1/fs): 4e-06

Alter the signal_level or window_size to get a more continuous dB rms profile of the sound.

8.1.5 Anomaly spans whole array

$ ValueError: The anomaly spans the whole array - please check again

“Anomalies” in the itsfm package are regions in the frequency profile which are particularly rough. This means the
accelaration of the frequency profile has gone beyond the max_acc threshold value. Most of the time anomalies are
small parts of the original signal. However, there may be times when an anomalous region spans the whole signal –
and thus this warning.

A closer inspection of this particular audio file may reveal more.

1. Reduce the signal_level for this particular audio. When the signal_level is set too high, the frequency profile of
irrelevant parts may be getting analysed, leading to odd and rough frequency profiles.

Hopefully this web page has enough information. Use the search bar to check if the error/issue you’re encountering
has already been documented. Also do check the examples to see if the same error messages have been explained.
If something’s not clear or there’s something not covered do write to me : thejasvib@gmail.com. I’ll try to answer
within a week.

70 Chapter 8. Where to get help

mailto:thejasvib@gmail.com

CHAPTER

NINE

I FOUND A BUG AND/OR HAVE FIXED SOMETHING

Please raise an issue or pull request on Github

71

itsFM, Release 0.0.1

72 Chapter 9. I found a bug and/or have fixed something

CHAPTER

TEN

ACKNOWLEDGEMENTS

The PWVD transforms in itsFM rely on the tftb package by Jaidev Deshpande. I’d like to thank the Neetash MR,
Aditya Krishna and Holger R. Goerlitz for helpful discussions that eventually lead down this path, and Diana Schoep-
pler for discussions that inspired the peak percentage method in this package. I’d also like to thank all the people who
happily sent me example data and gave feedback whenever asked!

73

https://tftb.readthedocs.io/en/latest/index.html

itsFM, Release 0.0.1

74 Chapter 10. Acknowledgements

CHAPTER

ELEVEN

LICENSE

MIT License

Copyright (c) 2020 Thejasvi Beleyur

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

11.1 API : The user interface

User-friendly top-level functions which allow the user to handle

1. Call-background segmentation

2. CF-FM call part segmentation

3. Measurement of CF-FM audio parts

Let’s take a look at an example where we [TO BE COMPLETED!!!]

import scipy.signal as signal
from itsfm.user_interface import segment_and_measure_call
from itsfm.view_horseshoebat_call import *
from itsfm.simulate_calls import make_cffm_call

create synthetic call
call_parameters = {'cf':(100000, 0.01),

'upfm':(80000, 0.002),
'downfm':(60000, 0.003),
}

fs = 500*10**3 # 500kHz sampling rate
synthetic_call, freq_profile = make_cffm_call(call_parameters, fs)

(continues on next page)

75

itsFM, Release 0.0.1

(continued from previous page)

window and reduce overall signal level
synthetic_call *= signal.tukey(synthetic_call.size, 0.1)
synthetic_call *= 0.75

measuring a well-selected call (without silent background)

measuing a call with a silent background

and add 2ms of additional background_noise of ~ -60dBrms
samples_1ms = int(fs*0.001)
final_size = synthetic_call.size + samples_1ms*2
call_with_noise = np.random.normal(0,10**(-60/20.0),final_size)
call_with_noise[samples_1ms:-samples_1ms] += synthetic_call

#

seg_and_msmts = segment_and_measure_call(call_with_noise, fs,
segment_from_background=True)

call_segmentation, call_parts, measurements, backg_segment = seg_and_msmts

itsfm.user_interface.segment_and_measure_call(main_call, fs, seg-
ment_from_background=False,
**kwargs)

Segments the CF and FM parts of a call and then proceeds to measure their characteristics. If required, also
segments call from background.

Parameters

• main_call (np.array) –

• fs (float>0) – sampling rate in Hz

• segment_from_background (boolean) – Whether to segment the call in the
main_call audio. Defaults to False.

Keyword Arguments

• further keyword arguments see segment_call_from_background,
(For) –

• and measure_hbc_call (segment_call_into_cf_fm) –

Returns

• segmentation_outputs (tuple) – The outputs of segment_call_into_cf_fm in a tuple

• call_parts_audio (dictionary) – Dictionary with numbered entries. If a sound has the fol-
lowing order of Cf and FM: FM-CF-FM, then the keys will be ‘fm1’,’cf1’,’fm2’. The num-
bering is according to the chronological order.

• measurements (pd.DataFrame) – All the measurements from the FM and CF parts.

76 Chapter 11. License

itsFM, Release 0.0.1

Example

Let’s simulate a call to demonstrate how the measurement+segmentation works.

>>> import scipy.signal as signal
>>> from itsfm.simulate_calls import make_cffm_call
>>> call_properties = {'cf':(80000, 0.01), 'upfm':(70000, 0.002),

'downfm':(50000, 0.002)}
>>> fs = 500000
>>> call, profile = make_cffm_call(call_properties, fs)
>>> call *= signal.tukey(call.size, 0.1)
>>> plt.figure()
>>> plot1 = plt.subplot(211)
>>> plt.plot(profile)
>>> #segment the CF and FM parts with the default 'peak percentage' method.
>>> segm_out, call_parts, measures, _ = segment_and_measure_call(call,

fs,
segment_method=

→˓'peak_percentage',
peak_percentage=0.

→˓999,
window_

→˓size=int(fs*0.5*10**-3))
>>> print(measures)

Now segment with frequency tracking implemented with the Pseudo Wigner Ville Distribution, and the set the
fmrate threshold to 10 kHz/ms

>>> segm_out, call_parts, measures, _ = segment_and_measure_call(call,
fs,
segment_method=

→˓'pwvd',
fmrate_

→˓threshold=10,
medianfilter_

→˓length=0.5*10**-3,
)

>>> plt.subplot(212, sharex=plot1)
>>> plt.plot(segm_out[-1]['fmrate'])
>>> print(measures)

See also:

itsfm.measure()

itsfm.user_interface.save_overview_graphs(all_subplots, analysis_name, file_name, index,
**kwargs)

Saves overview graphs.

Parameters

• all_subplots (list) – List with plt.subplot objects in them. For each figure to be
saved, one subplot object is enough.

• analysis_name (str) – The name of the analysis. If this funciton is called through a
batchfile, then it becomes the name of the batchfile

• file_name (str) –

• index (int, optional) – A numeric identifier for each graph. This is especially rel-
evant for analyses driven by batch files as there may be cases where the calls are selected

11.1. API : The user interface 77

itsFM, Release 0.0.1

from the same audio file but in different parts.

Returns

Return type None

Notes

This function has the main side effect of saving all the input figures into a pdf file with >1 pages (one page per
plot) for the user to inspect the results.

Example

import numpy as np

1st plot plt.figure() a = plt.subplot(211) plt.plot([1,2,3]) b = plt.subplot(212) plt.plot([5,4,3])

#2nd plot plt.figure() c = plt.subplot(121) plt.plot(np.random.normal(0,1,100)) d = plt.subplot(122)
plt.plot(np.random.normal(0,1,10))

save_overview_graphs([a,c], ‘example_plots’, ‘example_file’,0)

11.2 API : Segmenting sounds into CF and FM

Module that segments the horseshoebat call into FM and CF parts The primary logic of this

itsfm.segment.segment_call_into_cf_fm(call, fs, **kwargs)
Function which identifies regions into CF and FM based on the following process.

1. Candidate regions of CF and FM are first produced based on the segmentation method chosen’.

2. These candidate regions are then refined based on the user’s requirements (minimum length of region, maxi-
mum number of CF/FM regions in the sound)

3. The finalised CF and FM regions are output as Boolean arrays.

Parameters

• call (np.array) – Audio with horseshoe bat call

• fs (float>0) – Frequency of sampling in Hz.

• segment_method (str, optional) – One of [‘peak_percentage’, ‘pwvd’,
‘inst_freq’]. Checkout ‘See Also’ for more information. Defaults to ‘peak_percentage’

• refinement_method (function, str, optional) – The method used to refine
the initial CF and FM candidate regions according to the different constraints and rules set
by the user.

Defaults to ‘do_nothing’

Returns

• cf_samples, fm_samples (np.array) – Boolean numpy array showing which of the samples
belong to the cf and the fm respectively.

• info (dictionary) – Post-processing information depending on the methods used.

78 Chapter 11. License

itsFM, Release 0.0.1

Example

Create a chirp in the middle of a somewhat silent recording

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from itsfm.simulate_calls import make_fm_chirp, make_tone
>>> from itsfm.view_horseshoebat_call import plot_movingdbrms
>>> from itsfm.view_horseshoebat_call import visualise_call, make_x_time
>>> from itsfm.view_horseshoebat_call import plot_cffm_segmentation
>>> fs = 44100
>>> start_f, end_f = 1000, 10000
>>> chirp = make_fm_chirp(start_f, end_f, 0.01, fs)
>>> tone_freq = 11000
>>> tone = make_tone(tone_freq, 0.01, fs)
>>> tone_start = 30000; tone_end = tone_start+tone.size
>>> rec = np.random.normal(0,10**(-50/20), 44100)
>>> chirp_start, chirp_end = 10000, 10000 + chirp.size
>>> rec[chirp_start:chirp_end] += chirp
>>> rec[tone_start:tone_end] += tone
>>> rec /= np.max(abs(rec))
>>> actual_fp = np.zeros(rec.size)
>>> actual_fp[chirp_start:chirp_end] = np.linspace(start_f, end_f, chirp.size)
>>> actual_fp[tone_start:tone_end] = np.tile(tone_freq, tone.size)

Track the frequency of the recording and segment it according to frequency modulation

>>> cf, fm, info = segment_call_into_cf_fm(rec, fs, signal_level=-10,
segment_method='pwvd',)

View the output and plot the segmentation results over it: >>> plot_cffm_segmentation(cf, fm, rec, fs)

See also:

segment_by_peak_percentage(), segment_by_pwvd(), segment_by_inst_frequency(),
itsfm.refine_cfm_regions(), refine_cf_fm_candidates()

Notes

The post-processing information in the object info depends on the method used.

peak_percentage [the two keys ‘fm_re_cf’ and ‘cf_re_fm’ which are the] relative dBrms profiles of FM with
relation to the CF portion and vice versa

pwvd :

itsfm.segment.refine_cf_fm_candidates(refinement_method, cf_fm_candidates, fs, info,
**kwargs)

Parses the refinement method, checks if its string or function and calls the relevant objects.

Parameters

• refinement_method (str/function) – A string from the list of inbuilt functions in
the module refine_cfm_regions or a user-defined function. Defaults to do_nothing, an inbuilt
function which doesn’t returns the candidate Cf-fm regions without alteration.

• cf_fm_candidates (list with 2 np.arrays) – Both np.arrays need to be
Boolean and of the same size as the original audio.

• fs (float>0) –

11.2. API : Segmenting sounds into CF and FM 79

itsFM, Release 0.0.1

• info (dictionary) –

Returns cf, fm – Boolean arrays wher True indicates the sample is of the corresponding region.

Return type np.array

itsfm.segment.segment_by_peak_percentage(call, fs, **kwargs)
This is ideal for calls with one clear CF section with the CF portion being the highest frequency in the call:
bat/bird CF-FM calls which have on CF and one/two sweep section.

Calculates the peak frequency of the whole call and performs low+high pass filtering at a frequency slightly
lower than the peak frequency.

Parameters

• call (np.array) –

• fs (float>0) –

• peak_percentage (0<float<1, optional) – This is the fraction of the peak at
which low and high-pass filtering happens. Defaults to 0.98.

Returns

• cf_samples, fm_samples (np.array) – Boolean array with True indicating that sample has
been categorised as being CF and/or FM.

• info (dictionary) – With keys ‘fm_re_cf’ and ‘cf_re_fm’ indicating the relative dBrms pro-
files of the candidate FM regions relative to Cf and vice versa.

Notes

This method unsuited for audio with non-uniform call envelopes. When there is high variation over the call
envelope, the peak frequency is likely to be miscalculated, and thus lead to wrong segmentation.

This method is somewhat inspired by the protocol in Schoeppler et al. 2018. However, it differs in the important
aspect of being done entirely in the time domain. Schoeppler et al. 2018 use a spectrogram based method to
segment the CF and FM segments of H. armiger calls.

References

[1] Schoeppler, D., Schnitzler, H. U., & Denzinger, A. (2018). Precise Doppler shift compensation in the hip-
posiderid bat, Hipposideros armiger. Scientific Reports, 8(1), 1-11.

See also:

itsfm.segment.pre_process_for_segmentation()

itsfm.segment.segment_by_pwvd(call, fs, **kwargs)
This method is technically more accurate in segmenting CF and FM portions of a sound. The Pseudo-Wigner-
Ville Distribution of the input signal is generated.

Parameters

• call (np.array) –

• fs (float>0) –

• fmrate_threshold (float >=0) – The threshold rate of frequency modulation in
kHz/ms. Beyond this value a segment of audio is considered a frequency modulated region.
Defaults to 1.0 kHz/ms

80 Chapter 11. License

itsFM, Release 0.0.1

Returns

• cf_samples, fm_samples (np.array) – Boolean array of same size as call indicating candi-
date CF and FM regions.

• info (dictionary) – See get_pwvd_frequency_profile for the keys it outputs in the info dic-
tioanry. In addition, another key ‘fmrate’ is also calculated which has an np. array with the
rate of frequency modulation across the signal in kHz/ms.

Notes

This method may takes some time to run. It is computationally intensive. This method may not work very
well in the presence of multiple harmonics or noise. Some basic tweaking of the optional parameters may be
required.

See also:

get_pwvd_frequency_profile()

Example

Let’s create a two component call with a CF and an FM part in it >>> from itsfm.simulate_calls import
make_tone, make_fm_chirp, silence >>> from itsfm.view_horseshoebat_call import plot_cffm_segmentation
>>> from itsfm.view_horseshoebat_call import make_x_time >>> fs = 22100 >>> tone = make_tone(5000,
0.01, fs) >>> sweep = make_fm_chirp(1000, 6000, 0.005, fs) >>> gap = silence(0.005, fs) >>> full_call =
np.concatenate((tone, gap, sweep)) >>> # reduce rms calculation window size because of low sampling rate!
>>> cf, fm, info = segment_by_pwvd(full_call,

fs, window_size=10, signal_level=-12, sample_every=1*10**-3, extrap_length=0.1*10**-3)

>>> w,s = plot_cffm_segmentation(cf, fm, full_call, fs)
>>> s.plot(make_x_time(cf,fs), info['fitted_fp'])

itsfm.segment.whole_audio_fmrate(whole_freq_profile, fs, **kwargs)
When a recording has multiple components to it, there are silences in between. These silences/background noise
portions are assigned a value of 0 Hz.

When a ‘whole audio’ fm rate is naively calculated by taking the diff of the whole frequency profile, there will
be sudden jumps in the fm-rate due to the silent parts with 0Hz and the sound segments with non-zero segments.
Despite these spikes being very short, they then propagate their influence due to the median filtering that is later
down downstream. This essentially causes an increase of false positive FM segments because of the apparent
high fmrate.

To overcome the issues caused by the sudden zero to non-zero transitions in frequency values, this function han-
dles each non-zero sound segment separately, and calculates the fmrate over each sound segment independently.

Parameters

• whole_freq_profile (np.array) – Array with sample-level frequency values of the
same size as the audio.

• fs (float>0) –

Returns

• fmrate (np.array) – The rate of frequency modulation in kHz/ms. Same size as
whole_freq_profile Regions in whole_freq_profile with 0 frequency are set to 0kHz/ms.

11.2. API : Segmenting sounds into CF and FM 81

itsFM, Release 0.0.1

• fitted_frequency_profile (np.aray) – The downsampled, smoothed version of
whole_freq_profile, of the same size.

Attention: The fmrate must be processed further downstream! In the whole-audio fmrate array, all samples
that were 0 frequency in the original whole_freq_profile are set to 0 kHz/ms!!!

See also:

calculate_fm_rate()

Example

Let’s make a synthetic multi-component sound with 2 FMs and 1 CF component.

>>> fs = 22100
>>> onems = int(0.001*fs)
>>> sweep1 = np.linspace(1000,2000,onems) # fmrate of 1kHz/ms
>>> tone = np.tile(3000, 2*onems) # CF part
>>> sweep2 = np.linspace(4000,10000,3*onems) # 2kHz/ms
>>> gap = np.zeros(10)
>>> freq_profile = np.concatenate((sweep1, gap, tone, gap, sweep2))
>>> fmrate, fit_freq_profile = whole_audio_fmrate(freq_profile, fs)

itsfm.segment.calculate_fm_rate(frequency_profile, fs, **kwargs)
A frequency profile is generally oversampled. This means that there will be many repeated values and sometimes
minor drops in frequency over time. This leads to a higher FM rate than is actually there when a sample-wise
diff is performed.

This method downsamples the frequency profile, fits a polynomial to it and then gets the smoothened frequency
profile with unique values.

The sample-level FM rate can now be calculated reliably.

Parameters

• frequency_profile (np.array) – Array of same size as the original audio. Each
sample has the estimated instantaneous frequency in Hz.

• fs (float>0) – Sampling rate in Hz

• medianfilter_length (float>0, optional) – The median filter kernel size
which is used to filter out the noise in the frequency profile.

• sample_every (float, optional) – For default see
fit_polynomial_on_downsampled_version

Returns fm_rate – Same size as frequency_profile. The rate of frequency modulation in kHz/ms

Return type np.array

See also:

fit_polynomial_on_downsampled_version()

itsfm.segment.fit_polynomial_on_downsampled_version(frequency_profile, fs, **kwargs)
Chooses a subset of all points in the input frequency_profile and fits a piecewise polynomial on it. The start and
end of the frequency profile are not altered, and chosen as they are.

Parameters

82 Chapter 11. License

itsFM, Release 0.0.1

• frequency_profile (np.array) – The estimated instantaneous frequency in Hz at
each sample.

• fs (float>0) –

• sample_every (float>0, optional) – The time gap between consecutive points.
Defaults to a calculated value which corresponds to 1% of the frequency profiles duration.

• interpolation_kind (int, optional) – The polynomial order to use while fitting
the points. Defaults to 1, which is a piecewise linear fit.

Returns fitted – Same size as frequency_profile.

Return type np.array

itsfm.segment.fraction_duration(input_array, fs, fraction)
calculates the duration that matches the required fraction of the input array’s duration.

The fraction must be 0 < fraction < 1

itsfm.segment.check_relevant_duration(duration, fs)
checks that the duration is more than the inter-sample duration.

itsfm.segment.refine_candidate_regions()
Takes in candidate CF and FM regions and tries to satisfy the constraints set by the user.

itsfm.segment.check_segment_cf_and_fm(cf_samples, fm_samples, fs, **kwargs)

itsfm.segment.get_cf_region(cf_samples, fs, **kwargs)
TODO : generalise to multiple CF regions

Parameters

• cf_samples (np.array) – Boolean with True indicating a Cf region.

• fs (float) –

Returns cf_region – The longest continuous stretch

Return type np.array

itsfm.segment.get_fm_regions(fm_samples, fs, **kwargs)
TODO : generalise to multiple FM regions :param fm_samples: Boolean numpy array with candidate FM
samples. :type fm_samples: np.array :param fs: :type fs: float>0 :param min_fm_duration: minimum fm
duration expected in seconds. Any fm segment lower than this

duration is considered to be a bad read and discarded. Defaults to 0.5 milliseconds.

Returns valid_fm – Boolean numpy array with the corrected fm samples.

Return type np.array

itsfm.segment.segment_call_from_background(audio, fs, **kwargs)
Performs a wavelet transform to track the signal within the relevant portion of the bandwidth.

This methods broadly works by summing up all the signal content above the
`lowest_relevant_frequency` using a continuous wavelet transform.

If the call-background segmentation doesn’t work well it’s probably due to one of these things:

1. Incorrect background_threshold : Play around with different background_threshold
values.

11.2. API : Segmenting sounds into CF and FM 83

itsFM, Release 0.0.1

2. Incorrect lowest_relevant_frequency : If the lowest relevant frequency is set outside of the sig-
nal’s actual frequency range, then the segmentation will fail. Try lower this parameter till you’re sure all
of the signal’s spectral range is above it.

3. Low signal spectral range : This method uses a continuous wavelet transform to localise the relevant signal.
Wavelet transforms have high temporal resolution in for high frequencies, but lower temporal resolutions
for lower frequencies. If your signal is dominantly low-frequency, try resampling it to a lower sampling
rate and see if this works?

If the above tricks don’t work, then try bandpassing your signal - may be it’s an issue with the in-band signal to
noise ratio.

Parameters

• audio (np.array) –

• fs (float>0) – Frequency of sampling in Hertz.

• lowest_relevant_freq (float>0, optional) – The lowest frequency band in
Hz whose coefficients will be tracked. The coefficients of all frequencies in the signal >=
the lowest relevant frequency are tracked. This is the lowest possible frequency the signal
can take. It is best to give a few kHz of berth. Defaults to 35kHz.

• background_threshold (float<0, optional) – The relative threshold which is
used to define the background. The segmentation is performed by selecting the region that
is above background_threshold dB relative to the max dB rms value in the audio. Defaults
to -20 dB

• wavelet_type (str, optional) – The type of wavelet which will be used for the
continuous wavelet transform. Run pywt.wavelist(kind=’continuous’) for all possible types
in case the default doesn’t seem to work. Defaults to mexican hat, ‘mexh’

• scales (array-like, optional) – The scales to be used for the continuous wavelet
transform. Defaults to np.arange(1,10).

Returns

• potential_region (np.array) – A boolean numpy array where True corresponds to the re-
gions which are call samples, and False are the background samples. The single longest
continuous region is output.

• dbrms_profile (np.array) – The dB rms profile of the summed up wavelet transform for all
centre frequencies >= lowest_relevant_frequency.s

Raises

• ValueError – When lowest_relevant_frequency is too high or not included in the centre
frequencies of the default/input scales for wavelet transforms.

• IncorrectThreshold – When the dynamic range of the relevant part of the signal is
smaller or equal to the background_threshold.

itsfm.segment.identify_valid_regions(condition_satisfied, num_expected_regions=1)

Parameters

• condition_satisfied (np.array) – Boolean numpy array with samples either be-
ing True or False. The array may have multiple regions which satisfy a conditions (True)
separated by smaller regions which don’t (False).

• num_expected_regions (int > 0) – The number of expected regions which satisfy
a condition. If >2, then the first two longest continuous regions will be returned, and the
smaller regions will be suppressed/eliminated. Defaults to 1.

84 Chapter 11. License

itsFM, Release 0.0.1

Returns valid_regions – Boolean array which identifies the regions with the longest contiguous
lengths.

Return type np.array

itsfm.segment.identify_maximum_contiguous_regions(condition_satisfied, num-
ber_regions_of_interest=1)

Given a Boolean array - this function identifies regions of contiguous samples that are true and labels each with
its own region_number.

Parameters

• condition_satisfied (np.array) – Numpy array with Boolean (True/False) en-
tries for each sample.

• number_regions_of_interest (integer > 1) – Number of contiguous regions
which are to be detected. The region ids are output in descending order (longest–>shortest).
Defaults to 1.

Returns

• region_numbers (list) – List with numeric IDs given to each contiguous region which is
True.

• region_id_and_samples (np.array) – Two columns numpy array. Column 0 has the re-
gion_number, and Column 1 has the individual samples that belong to each region_number.

:raises ValueError : This happens if the condition_satisfied array has no entries that are True.:

itsfm.segment.pre_process_for_segmentation(call, fs, **kwargs)
Performs a series of steps on a raw cf call before passing it for temporal segmentation into cf and fm. Step 1:
find peak frequency Step 2: lowpass (fm_audio) and highpass (cf_audio) below

a fixed percentage of the peak frequency

Step 3: calculate the moving dB of the fm and cf audio

Parameters

• call (np.array) –

• fs (int.) – Frequency of sampling in Hertz

• peak_percentage (0<float<1, optional) – This is the fraction of the peak at
which low and high-pass filtering happens. Defaults to 0.98.

• lowpass (optional) – Custom lowpass filtering coefficients. See
low_and_highpass_around_threshold

• highpass – Custom highpass filtering coefficients. See
low_and_highpass_around_threshold

• window_size (integer, optional) – The window size in samples over which the
moving rms of the low+high passed signals will be calculated. For default value see docu-
mentation of moving_rms

Returns cf_dbrms, fm_dbrms – The dB rms profile of the high + low passed versions of the input
audio.

Return type np.arrays

See also:

itsfm.segment.low_and_highpass_around_threshold()

11.2. API : Segmenting sounds into CF and FM 85

itsFM, Release 0.0.1

itsfm.segment.low_and_highpass_around_threshold(audio, fs, threshold_frequency,
**kwargs)

Make two version of an audio clip: the low pass and high pass versions.

Parameters

• audio (np.array) –

• fs (float>0) – Frequency of sampling in Hz

• threshold_frequency (float>0) – The frequency at which the lowpass and high-
pass operations are be done.

• lowpass,highpass (ndarrays, optional) – The b & a polynomials of an IIR
filter which define the lowpass and highpass filters. Defaults to a second order elliptical
filter with rp of 3dB and rs of 10 dB. See signal.ellip for more details of rp and rs.

• pad_duration (float>0, optional) – Zero-padding duration in seconds before
low+high pass filtering. Defaults to 0.1 seconds.

• double_pass (bool, optional) – Low/high pass filter the audio twice. This has
been noticed to help with segmentation accuracy, especially for calls with short CF/FM
segments where edge effects are particularly noticeable. Defaults to False

Returns lp_audio, hp_audio – The low and high pass filtered versions of the input audio.

Return type np.arrays

itsfm.segment.get_thresholds_re_max(cf_dbrms, fm_dbrms)

itsfm.segment.calc_proper_kernel_size(durn, fs)
scipy.signal.medfilt requires an odd number of samples as kernel_size. This function calculates the number of
samples for a given duration which is odd and is close to the required duration.

Parameters

• durn (float) – Duration in seconds.

• fs (float) – Sampling rate in Hz

Returns samples – Number of odd samples that is equal to or little less (by one sample) than the
input duration.

Return type int

itsfm.segment.resize_by_adding_one_sample(input_signal, original_signal, **kwargs)
Resizes the input_signal to the same size as the original signal by repeating one sample value. The sample value
can either the last or the first sample of the input_signal.

itsfm.segment.median_filter(input_signal, fs, **kwargs)
Median filters a signal according to a user-settable window size.

Parameters

• input_signal (np.array) –

• fs (float) – Sampling rate in Hz.

• medianfilter_size (float, optional) – The window size in seconds. Defaults
to 0.001 seconds.

Returns med_filtered – Median filtered version of the input_signal.

Return type np.array

86 Chapter 11. License

itsFM, Release 0.0.1

itsfm.segment.identify_cf_ish_regions(frequency_profile, fs, **kwargs)
Identifies CF regions by comparing the rate of frequency modulation across the signal. If the frequency modu-
lation within a region of the signal is less than the limit then it is considered a CF region.

Parameters

• frequency_profile (np.array) – The instantaneous frequency of the signal over
time in Hz.

• fm_limit (float, optional) – The maximum rate of frequency modulation in Hz/s.
Defaults to 1000 Hz/s

• medianfilter_size (float, optional) –

Returns

• cfish_regions (np.array) – Boolean array where True indicates a low FM rate region. The
output may still need to be cleaned before final use.

• clean_fmrate_resized

Notes

If you’re used to reading FM modulation rates in kHz/ms then just follow this relation to get the required
modulation rate in Hz/s:

X kHz/ms = (X Hz/s)* 10^-6

OR

X Hz/s = (X kHz/ms) * 10^6

See also:

median_filter()

itsfm.segment.segment_cf_regions(audio, fs, **kwargs)

exception itsfm.segment.CFIdentificationError

exception itsfm.segment.IncorrectThreshold

11.3 API: Measuring sounds

Module that measures each continuous CF and FM segment with either inbuilt or user-defined functions.

itsfm.measure.measure_hbc_call(call, fs, cf, fm, **kwargs)
Performs common or unique measurements on each of the Cf and FM segments detected.

Parameters

• audio (np.array) –

• fs (float>0.) – Frequency of sampling in Hz.

• cf (np.array) – Boolean array with True indicating samples that define the CF

• fm (np.array) – Boolean array with True indicating samples that define the FM

• measurements (list, optional) – List with measurement functions

Returns measurement_values – A wide format dataframe with one row corresponding to all the
measured values for a CF or FM segment

11.3. API: Measuring sounds 87

itsFM, Release 0.0.1

Return type pd.DataFrame

See also:

itsfm.measurement_functions()

Example

Create a call with fs and make fake CF and FM segments

>>> fs = 1.0
>>> call = np.random.normal(0,1,100)
>>> cf = np.concatenate((np.tile(0, 50), np.tile(1,50))).astype('bool')
>>> fm = np.invert(cf)

Get the default measurements by not specifying any measurements explicitly.

>>> sound_segments, measures = measure_hbc_call(call, fs,
cf, fm)

>>> print(measures)

And here’s an example with some custom functions.The default measurements will appear in addition to the
custom measurements.

>>> from itsfm.measurement_functions import measure_peak_amplitude, measure_peak_
→˓frequency
>>> custom_measures = [peak_frequency, measure_peak_amplitude]
>>> sound_segments, measures = measure_hbc_call(call, fs,

cf, fm,
measurements=custom_measures)

itsfm.measure.parse_cffm_segments(cf, fm)
Recognises continuous stretches of Cf and FM segments, organises them into separate ‘objects’ and orders them
in time.

Parameters fm (cf,) – Boolean arrays indicating which samples are CF/FM.

Returns cffm_regions_numbered – Each tuple corresponds to one CF or FM region in the audio.
The tuple has two entries 1) the region identifier, eg. ‘fm1’ and 2) the indices that correspond to
the region eg. slice(1,50)

Return type np.array with tuples.

Example

an example sound with two cfs and an fm in the middle

>>> cf = np.array([0,1,1,0,0,0,1,1,0]).astype('bool')
>>> fm = np.array([0,0,0,1,1,1,0,0,0]).astype('bool')
>>> ordered_regions = parse_cffm_segments(cf, fm)
>>> print(ordered_regions)
[['cf1', slice(1, 3, None)], ['fm1', slice(3, 6, None)],
['cf2', slice(6, 8, None)]]

itsfm.measure.perform_segment_measurements(full_sound, fs, segment, functions_to_apply,
**kwargs)

Performs one or more measurements on a specific segment of a full audio clip.

88 Chapter 11. License

itsFM, Release 0.0.1

Parameters

• full_sound (np.array) –

• fs (float>0) –

• segment (tuple) – First object is a string with the segment’s id, eg. ‘fm1’ or ‘cf2’ Second
object is a slice with the indices of the segment, eg. slice(0,100)

• functions_to_apply (list of functions) – Each function must be a ‘measure-
ment function’. A measurement function is one that accepts a strict set of inputs. check See
Also for more details.

Returns results – A single row with all the measurements results. The first column is always the
‘regionid’, the rest of the columns are measurement function dependent.

Return type pd.DataFrame

Example

Here we’ll create a short segment and take the rms and the peak value of the segment. The relevant_region is
not an FM region, it is only labelled so here to show how it works with the rest of the package!

>>> np.random.seed(909)
>>> audio = np.random.normal(0,1,100)
>>> relevant_region = ('fm1',slice(10,30))

The sampling rate doesn’t matter for the custom functions defined below, but, it may be important for some
other functions.

>>> fs = 1 # Hz
>>> from itsfm.measurement_functions import measure_rms, measure_peak
>>> results = perform_segment_measurements(audio, fs, relevant_region,

[measure_rms, measure_peak])

itsfm.measure.find_regions(X)

itsfm.measure.combine_and_order_regions(cf_slices, fm_slices)

itsfm.measure.assign_cffm_regionids(cffm, cf_regions, fm_regions)

itsfm.measure.common_measurements()
Loads the default common measurement set for any region.

11.3.1 Measurement functions

This is a set of measurement functions which are used to measure various things about a part of an audio. A measure-
ment function is a specific kind of

function which accepts three arguments and outputs a dictionary.

11.3. API: Measuring sounds 89

itsFM, Release 0.0.1

What is a measurement function:

A measurement function is a specific kind of function which accepts three arguments and outputs a dictionary. User-
defined functions can be used to perform custom measurements on the segment of interest.

Measurement function parameters

1. the full audio, a np.array

2. the sampling rate, a float>0

3. the segment, a slice object which defines the span of the segment. For instance (‘fm1’, slice(0,100))

What needs to be returned:

A measurement function must return a dictionary with >1 keys that are strings and items that can be easily
incorporated into a Pandas DataFrame and viewed on a csv file with ease. Ideal item types include strings,
floats, or tuples.

See the source code of the built-in measurement functions below for an example of how to satisfy the
measurement function pattern.

Attention: Remember to name the output of the measurement function properly. If the output key of one mea-
surement function is the same as the other, it will get overwritten in the final dictionary!

itsfm.measurement_functions.measure_rms(audio, fs, segment, **kwargs)

See also:

itsfm.signal_processing.rms()

itsfm.measurement_functions.measure_peak_amplitude(audio, fs, segment, **kwargs)

itsfm.measurement_functions.start(audio, fs, segment, **kwargs)

itsfm.measurement_functions.stop(audio, fs, segment, **kwargs)

itsfm.measurement_functions.duration(audio, fs, segment, **kwargs)

itsfm.measurement_functions.measure_peak_frequency(audio, fs, segment, **kwargs)

See also:

itsfm.signal_processing.get_peak_frequency()

itsfm.measurement_functions.measure_terminal_frequency(audio, fs, segment,
**kwargs)

See also:

itsfm.get_terminal_frequency()

90 Chapter 11. License

itsFM, Release 0.0.1

11.4 API : Viewing sounds, parameters and results

Bunch of functions which help in visualising data and results

There is a common pattern in the naming of viewing functions.

1. functions starting with ‘visualise’ include an overlay of a particular output attribute on top of or with the the
original signal. For example visualise_sound

2. functions starting with ‘plot’ are bare bones plots with just the attribute on the y and time on the x.

class itsfm.view.itsFMInspector(segmeasure_out, whole_audio, fs, **kwargs)
Handles the output from measure_and_segment calls, and allows plotting of the outputs.

Parameters

• segmeasure_out (tuple) – Tuple object containing three other objects which are the
output from segment_and_measure_call 1. segmentation_output : tuple

Tuple with the cf boolean array, fm boolean array and info dictioanry

2. audio_parts [dictionary] Dictionary with call part labels and values as selected audio
parts as np.arrays

3. measurements [pd.DataFrame] A wide-formate dataframe with one row referring to
meaurements done on one call part eg. if a call has 3 parts (fm1, cf1, fm2), then
there will be three columns and N columns, if N measurements have been done.

• whole_audio (np.array) – The audio that was analysed.

• fs (float>0) – Sampling rate in Hz.

Notes

• Not all visualise methods may be supported. It depends on the segmentation method at hand.

• All visualise methods return one/multiple subplots that could be used and embellished further for your
own custom laying over.

visualise_fmrate()
Plots the spectrogram + FM rate profile in a 2 row plot

visualise_accelaration()
Plots the spectrogram + accelaration of the frequency profile in a 2 row plot

visualise_cffm_segmentation()

visualise_frequency_profiles(fp_type='all')
Visualises either one or all of the frequency profiles that are present in the info dictionary. The function
relies on picking up all keys in the info dictionary that end with ‘<>_fp’ pattern.

Parameters fp_type (str/list with str's) – Needs to correspond to a key found in
the info dictionary

visualise_pkpctage_profiles()

visualise_geq_signallevel()
Some tracking/segmentation methods rely on using only regions that are above a threshold, the signal_level
. A moving dB rms window is pass

ed, and only regions above it are

11.4. API : Viewing sounds, parameters and results 91

itsFM, Release 0.0.1

itsfm.view.check_call_background_segmentation(whole_call, fs, main_call_mask,
**kwargs)

Visualises the main call selection

Parameters

• whole_call (np.array) – Call audio

• fs (float>0) – Sampling rate in Hz

• main_call_mask (np.array) – Boolean array where True indicates the sample is part
of the main call, and False that it is not.

Returns waveform, spec

Return type pyplot.subplots

Notes

The appearance of the two subplots can be further changes by varying the keyword arguments. For available
keyword arguments see the visualise_sound function.

itsfm.view.show_all_call_parts(only_call, call_parts, fs, **kwargs)

Parameters

• only_call (np.array) –

• call_parts (dictionary) – Dictionary with keys ‘cf’ and ‘fm’ The entry for ‘cf’
should only have one audio segment. The entry for ‘fm’ can have multiple audio segments.

• fs (float>0) – Sampling rate in Hz.

Returns

Return type None

Notes

For further keyword arguments to customise the spectrograms see documentation for make_specgram This
function does not return any output, it only produces a figure with subplots.

itsfm.view.visualise_fmrate_profile(X, freq_profile, fs)

itsfm.view.plot_accelaration_profile(X, fs)
Plots the frequency acclearation profile of a frequency profile

Parameters

• X (np.array) – The frequency profile with sample-level estimates of frequency in Hz.

• fs (float>0) –

Returns

• A plt.plot which can be used as an independent figure ot

• a subplot.

itsfm.view.plot_movingdbrms(X, fs, **kwargs)

itsfm.view.visualise_sound(audio, fs, **kwargs)

Parameters

92 Chapter 11. License

itsFM, Release 0.0.1

• audio –

• fs –

• fft_size (integer>0, optional) –

Returns a0, a1

Return type subplots

itsfm.view.make_specgram(audio, fs, **kwargs)

itsfm.view.get_fftsize(fs, **kwargs)

itsfm.view.make_overview_figure(call, fs, measurements, **kwargs)

itsfm.view.plot_dbrms_cffmprofiles(seg_details, fs)
Makes a plot with CF anf FM dB rms profiles. This method only works for peak-percentage based segmentation.

Parameters

• seg_details (tuple) – Tuple with 3 entries. The third entry needs to be a dictionary
with at least the following keys : ‘cf_re_fm’ and ‘fm_re_cf’

• fs (float>0) – Sample rate in Hz

Returns

Return type matplotlib plot

11.5 API: support modules

11.5.1 Frequency tracking

Even though the spectrogram is one of the most dominant time-frequency representation, there are whole class of
alternate representations. This module has the code which tracks the dominant frequency in a sound using non-
spectrogram methods.

The Pseudo Wigner Ville Distribution

The Pseudo Wigner Ville Distribution is an accurate but not so well known method to represent a signal on the time-
frequency axis[1]. This time-frequency representation is implemented in the get_pwvd_frequency_profile.

References

[1] Cohen, L. (1995). Time-frequency analysis (Vol. 778). Prentice hall.

itsfm.frequency_tracking.get_pwvd_frequency_profile(input_signal, fs, **kwargs)
Generates a clean frequency profile through the PWVD. The order of frequency profile processing is as follows:

1. Split input signal into regions that are greater or equal to the signal_level. This speeds up the whole process
of pwvd tracking multiple sounds, and ignores the fainter samples.

2. Generate PWVD for each above-noise region.

3. Set regions below background noise to 0Hz

4. Remove sudden spikes and set these regions to values decided by interpolation between adjacent non-spike
regions.

Parameters

11.5. API: support modules 93

itsFM, Release 0.0.1

• input_signal (np.array) –

• fs (float) –

Notes

The fact that each signal part is split into independent above-background segments and then frequency tracked
can have implications for frequency resolution. Short sounds may end up with frequency profiles that have
a lower resolution than longer sounds. Each sound is handled separately primarily for memory and speed
considerations.

Example

Create two chirps in the middle of a somewhat silent recording

>>> import matplotlib.pyplot as plt
>>> from itsfm.simulate_calls import make_fm_chirp
>>> from itsfm.view_horseshoebat_call import plot_movingdbrms
>>> from itsfm.view_horseshoebat_call import visualise_call, make_x_time
>>> fs = 44100
>>> start_f, end_f = 1000, 10000
>>> chirp = make_fm_chirp(start_f, end_f, 0.01, fs)
>>> rec = np.random.normal(0,10**(-50/20), 22100)
>>> chirp1_start, chirp1_end = 10000, 10000 + chirp.size
>>> chirp2_start, chirp2_end = np.array([chirp1_start, chirp1_end])+int(fs*0.05)
>>> rec[chirp_start:chirp_end] += chirp
>>> rec[chirp2_start:chirp2_end] += chirp
>>> rec /= np.max(abs(rec))
>>> actual_fp = np.zeros(rec.size)
>>> actual_fp[chirp1_start:chirp1_end] = np.linspace(start_f, end_f, chirp.size)
>>> actual_fp[chirp2_start:chirp2_end] = np.linspace(start_f, end_f, chirp.size)

Check out the dB rms profile of the recording to figure out where the noise floor is

>>> plot_movingdbrms(rec, fs)

>>> clean_fp, info = get_pwvd_frequency_profile(rec, fs,
signal_level=-9,
extrap_window=10**-3,
max_acc = 0.6)

>>> plt.plot(clean_fp, label='obtained')
>>> plt.plot(actual_fp, label='actual')
>>> plt.legend()

Now, let’s overlay the obtained frequency profile onto a spectrogram to check once more how well the dominant
frequency has been tracked.

>>> w,s = visualise_call(rec, fs, fft_size=128)
>>> s.plot(make_x_time(clean_fp, fs), clean_fp)

See also:

itsfm.signal_cleaning.smooth_over_potholes(), find_above_noise_regions()

itsfm.frequency_tracking.find_geq_signallevel(X, fs, **kwargs)
Find regions greater or equal to signal level

94 Chapter 11. License

itsFM, Release 0.0.1

itsfm.frequency_tracking.clean_up_spikes(whole_freqeuncy_profile, fs, **kwargs)

Applies smooth_over_potholes on each non-zero frequency segment in the profile.

smooth_over_potholes

Let’s create a case with an FM and CF tone

>>> from itsfm.simulate_calls import make_tone, make_fm_chirp, silence
>>> fs = 22100
>>> tone = make_tone(5000, 0.01, fs)
>>> sweep = make_fm_chirp(1000, 6000, 0.005, fs)
>>> gap = silence(0.005, fs)
>>> full_call = np.concatenate((tone, gap, sweep))

The raw frequency profile, with very noisy frequency estimates needs to be further cleaned

>>> raw_fp, frequency_index = generate_pwvd_frequency_profile(full_call,
fs)

>>> noise_supp_fp = noise_supp_fp = suppress_background_noise(raw_fp,
full_call,
window_size=25,
background_noise=-30)

Even after the noisy parts have been suppressed, there’re still some spikes caused by the

>>>

itsfm.frequency_tracking.generate_pwvd_frequency_profile(input_signal, fs,
**kwargs)

Generates the raw instantaneous frequency estimate at each sample. using the Pseudo Wigner Ville Distribution

Parameters

• input_signal (np.array) –

• fs (float) –

• pwvd_filter (Boolean, optional) – Whether to perform median filtering with a
2D kernel. Defaults to False

• pwvd_filter_size (int, optional) – The size of the square 2D kernel used to
median filter the initial PWVD time-frequency representation.

• pwvd_window (float>0, optional) – The duration of the window used in the
PWVD. See pwvd_transform for the default value.

• tfr_cliprange (float >0, optional) – The clip range in dB. Clips all val-
ues in the abs(pwvd) time-frequency representation to between max and max*10*(-
tfr_cliprange/20.0). Defaults to None, which does not alter the pwvd transform in anyway.

Returns raw_frequency_profile, frequency_indx – Both outputs are the same size as input_signal.
raw_frequency_profile is the inst. frequency in Hz. frequency_indx is the row index of the
PWVD array.

Return type np.array

See also:

pwvd_transform(), track_peak_frequency_over_time(), itsfm.signal_cleaning.
clip_tfr()

11.5. API: support modules 95

itsFM, Release 0.0.1

itsfm.frequency_tracking.pwvd_transform(input_signal, fs, **kwargs)
Converts the input signal into an analytical signal and then generates the PWVD of the analytical signal.

Uses the PseudoWignerVilleDistribution class from the tftb package [1].

Parameters

• input_signal (np.array) –

• fs (float) –

• pwvd_window_type (np.array, optional) – The window to be used for the
pseudo wigner-ville distribution. If not given, then a hanning signal is used of the default
length. The window given here supercedes the ‘window_length’ argument below.

• pwvd_window (float>0, optional) – The duration of the window used in the
PWVD. Defaults to 0.001s

Returns time_frequency_output – Two dimensional array with dimensions of NsamplesxNsam-
ples, where Nsamples is the number of samples in input_signal.

Return type np.array

References

[1] Jaidev Deshpande, tftb 0.1.1 ,Python module for time-frequency analysis, https://pypi.org/project/tftb/

itsfm.frequency_tracking.track_peak_frequency_over_time(input_signal, fs,
time_freq_rep, **kwargs)

Tracks the lowest possible peak frequency. This ensures that the lowest harmonic is being tracked in a multihar-
monic signal with similar levels across the harmonics.

EAch ‘column’ of the 2D PWVD is inspected for the lowest peak that crosses a percentile threshold, and this is
then taken as the peak frequency.

Parameters

• input_signal (np.array) –

• fs (float>0) –

• time_freq_rep (np.array) – 2D array with the PWVD representation.

• percentile (0<float<100, optional) –

Returns peak_freqs, peak_inds – Arrays with same size as the input_signal. peak_freqs is the
frequencies in Hz, peak_inds is the row index.

Return type np.array

See also:

find_lowest_intense_harmonic_across_TFR(), get_most_intense_harmonic()

itsfm.frequency_tracking.find_lowest_intense_harmonic_across_TFR(tf_representation,
**kwargs)

itsfm.frequency_tracking.get_most_intense_harmonic(time_slice, **kwargs)
Searches a single column in a 2D array for the first region which crosses the given percentile threshold.

itsfm.frequency_tracking.get_midpoint_of_a_region(region_object)

itsfm.frequency_tracking.accelaration(X, fs)
Calculates the absolute accelrateion of a frequency profile in kHz/ms^2

96 Chapter 11. License

https://pypi.org/project/tftb/

itsFM, Release 0.0.1

itsfm.frequency_tracking.speed(X, fs)
Calculates the abs speed of the frequency profile in kHz/ms

itsfm.frequency_tracking.get_first_region_above_threshold(input_signal,
**kwargs)

Takes in a 1D signal expecting a few peaks in it above the percentil threshold. If all samples are of the same
value, the region is restricted to the first two samples.

Parameters

• input_signal (np.array) –

• percentile (0<float<100, optional) – The percentile threshold used to set the
threshold. Defaults to 99.5

Returns region_location – If there is at least one region above the threshold a tuple with the output
from scipy.ndimage.find_objects. Otherwise None.

Return type tuple or None

itsfm.frequency_tracking.frequency_spike_detection(X, fs, **kwargs)
Detects spikes in the frequency profile by monitoring the accelration profile through the sound.

Parameters

• X (np.array) – A frequency profile with sample-level estimates of frequency in Hz

• fs (float>0) –

• max_acc (float>0, optional) – Maximum acceleration in the frequency profile.
Defaults to 0.5kHz/ms^2

Returns anomalous – Boolean

Return type np.array

11.5.2 Signal processing

Functions which actually do the calculations on the raw input signal

Module with signal processing functions in it used by both measure and segment modules.

itsfm.signal_processing.dB(X)
Calculates the 20log of X

itsfm.signal_processing.rms(X)
Root mean square of a signal

itsfm.signal_processing.calc_energy(X)
Sum of all squared samples

itsfm.signal_processing.get_power_spectrum(audio, fs=250000.0)
Calculates an RFFT of the audio. :param audio: :type audio: np.array :param fs: Frequency of sampling in Hz
:type fs: int

Returns

• dB_power_spectrum (np.array) – dB(power_spectrum)

• freqs (np.array) – Centre frequencies of the RFFT.

itsfm.signal_processing.calc_sound_borders(audio, percentile=99)
Gives the start and stop of a sound based on the percentile cumulative energy values.

Parameters

11.5. API: support modules 97

itsFM, Release 0.0.1

• audio (np.array) –

• percentile (float, optional) – Value between 100 and 0. The sound border is
calcualted as the border which encapsulates the percentile of energy Defaults to 99.

Returns start, end

Return type int

itsfm.signal_processing.get_robust_peak_frequency(audio, **kwargs)
Makes a spectrogram from the audio and calcualtes the peak frequency by averaging each slice of the spectro-
gram’s FFT’s.

This ‘smooths’ out the structure of the power spectrum and allows a single and clear peak detection.

Thanks to Holger Goerlitz for the suggestion.

Parameters

• audio (np.array) –

• fs (float) – Frequency of sampling in Hz

• seg_length (int, optional) – The size of the FFt window used to calculate the
moving FFT slices. DEfaults to 256

• noverlap (int, optional) – The number of samples overlapping between one FFT
slice and the next. Defaults to seg_length -1

Returns peak_frequency – Frequency with highest power in the audio in Hz.

Return type float

itsfm.signal_processing.get_peak_frequency(audio, fs)
Gives peak frequency and frequency resolution with which the measurement is made

Parameters

• audio (np.array) –

• fs (float>0) – sampling rate in Hz

Returns peak_freq, freq_resolution – The peak frequency and frequency resolution of this peak
frequency in Hz.

Return type float

itsfm.signal_processing.get_frequency_resolution(audio, fs)

Parameters

• audio (np.array) –

• fs (float>0) – sampling rate in Hz

Returns resolution – The frequency resolution in Hz.

Return type float

itsfm.signal_processing.moving_rms(X, **kwargs)
Calculates moving rms of a signal with given window size. Outputs np.array of same size as X. The rms of the
last few samples <= window_size away from the end are assigned to last full-window rms calculated

Parameters

• X (np.array) – Signal of interest.

• window_size (int, optional) – Defaults to 125 samples.

98 Chapter 11. License

itsFM, Release 0.0.1

Returns all_rms – Moving rms of the signal.

Return type np.array

itsfm.signal_processing.moving_rms_edge_robust(X, **kwargs)
Calculates moving rms of a signal with given window size. Outputs np.array of same size as X. This version
is robust and doesn’t suffer from edge effects as it calculates the moving rms in both forward and backward
directions and calculates a consensus moving rms profile.

The consensus rms profile is basically achieved by taking the left half of the forward rms profile and concate-
nating it with the right hald of the backward passed rms profile.

Parameters

• X (np.array) – Signal of interest.

• window_size (int, optional) – Defaults to 125 samples.

Returns all_rms – Moving rms of the signal.

Return type np.array

Notes

moving_rms_edge_robust may not be too accurate when the rms is expected to vary over short time scales in
the centre of the signal!!

itsfm.signal_processing.form_consensus_moving_rms(forward, backward)

Parameters

• backward (forward,) – Two arrays of the same dimensions.

• and returns the consensus maximum value at each sample.
(Compares) –

itsfm.signal_processing.median_filter(input_signal, fs, **kwargs)
Median filters a signal according to a user-settable window size.

Parameters

• input_signal (np.array) –

• fs (float) – Sampling rate in Hz.

• medianfilter_size (float, optional) – The window size in seconds. Defaults
to 0.001 seconds.

Returns med_filtered – Median filtered version of the input_signal.

Return type np.array

itsfm.signal_processing.calc_proper_kernel_size(durn, fs)
scipy.signal.medfilt requires an odd number of samples as kernel_size. This function calculates the number of
samples for a given duration which is odd and is close to the required duration.

Parameters

• durn (float) – Duration in seconds.

• fs (float) – Sampling rate in Hz

Returns samples – Number of odd samples that is equal to or little less (by one sample) than the
input duration.

Return type int

11.5. API: support modules 99

itsFM, Release 0.0.1

itsfm.signal_processing.resize_by_adding_one_sample(input_signal, original_signal,
**kwargs)

Resizes the input_signal to the same size as the original signal by repeating one sample value. The sample value
can either the last or the first sample of the input_signal.

itsfm.signal_processing.get_terminal_frequency(audio, fs, **kwargs)
Gives the -XdB frequency from the peak.

The power spectrum is calculated and smoothened over 3 frequency bands to remove complex comb-like struc-
tures.

Then the lowest frequency below XdB from the peak is returned.

Parameters

• audio (np.array) –

• fs (float>0) – Sampling rate in Hz

• terminal_frequency_threshold (float, optional) – The terminal fre-
quency is calculated based on finding the level of the peak frequency and choosing the
lowest frequency which is -10 dB (20log10) below the peak level. Defaults to -10 dB

Returns

• terminal_frequency

• threshold

Notes

Careful about setting threshold too low - it might lead to output of terminal frequencies that are actually in the
noise, and not part of the signal itself.

11.5.3 Signal cleaning

Functions which refine, clean and detect outliers.

This module handles the identification and cleaning of noise in signals. A ‘noisy’ signal is one that has spikes in it
or sudden variations in a continuous looking function. Most of these functions are built to detect and handle sudden
spikes in the frequency profile estimates of a sound.

itsfm.signal_cleaning.exterpolate_over_anomalies(X, fs, anomalous, **kwargs)
Ex(tra)+(in)ter-polates –> Exterpolates over anomalous regions. Anomalous regions are either ‘edge’ or ‘island’
types. The ‘edge’ anomalies are those which are at the extreme ends of the signal. The ‘island’ anomalies are
regions with non-anomalous regions on the left and right.

An ‘edge’ anomalous region is handled by running a linear regression on the neighbouring non-anomalous
region, and using the slope to extrapolate over the edge anomaly.

An ‘island’ anomaly is handled by interpolating between the end values of the neighbouring non-anomalous
regions.

Parameters

• X (np.array) –

• fs (float>0) – Sampling rate in Hz

• anomalous (np.array) – Boolean array of same size as X True indicates an anomalous
sample.

100 Chapter 11. License

itsFM, Release 0.0.1

• extrap_window (float>0, optional) – The duration of the extrapolation window
in seconds. Defaults to 0.1ms

Returns smooth_X – Same size as X, with the anomalous regions

Return type np.array

Notes

Only extrapolation by linear regression is supported currently. The extrap_window parameter is important espe-
cially if there is a high rate of frequency modulation towards the edges of the sound. When there is a high freq.
mod. at the edges it is better to set the extrap_window small. However, setting it too small also means that the
extrapolation may not be as nice anymore.

Example

not up to date!!!

See also:

find_closest_normal_region()

itsfm.signal_cleaning.fix_island_anomaly(X, fs, anomaly, ref_region_length, **kwargs)
First tries to interpolate between the edges of the anomaly at hand. If the interpolation leads to a very drastic
slope, a ‘sensible’ extrapolation is attempted using parts of the non-anomalous signal.

Parameters

• X (np.array) –

• fs (float>0) –

• anomaly (tuple slice) – scipy.ndimage.find_objects output (slice(start,stop,None),)

• ref_region_length (int>0) – The number of samples to be used as a reference re-
gion in case of extrapolation

• max_fmrate (float>0, optional) – The maximum fm rate to be tolerated while
interpolating in kHz/ms Defaults to 100 kHz/ms.

Returns interpolated – Array of same size as anomaly.

Return type np.array

itsfm.signal_cleaning.extrapolate_sensibly(X, fs, anomaly, ref_region_length, **kwargs)
Function called when fix_island_anomaly detects direct interpolation will lead to unrealistic slopes. This func-
tion is called when there’s a big difference in values across an anomalous region and an extrapolation must be
performed which will not alter the signal drastically.

The method tries out the following:

1. Look left and right of the anomaly to see which region has higher frequency content.

2. Extrapolate in the high-to-low frequency direction.

This basically means that if the local inspection window around anomaly has a sweep between 20-10kHZ on
the left and a 0Hz region on the right - the anomaly will be extrapolated with the slope from the sweep region
because it has higher frequency content.

11.5. API: support modules 101

itsFM, Release 0.0.1

Example

>>> freq_profile = [np.zeros(10), np.arange(15,30,5)*1000]
>>> fs = 1.0
>>> x = np.concatenate(freq_profile)[::-1]
>>> anom = (slice(2, 5, None),)
>>>
>>> plt.plot(x, label='noisy frequency profile')
>>> anom_x = np.zeros(x.size, dtype='bool')
>>> anom_x[anom[0]] = True
>>> plt.plot(anom_x*8000, label='identified anomaly')
>>> extrap_out = extrapolate_sensibly(x, fs, anom, 4)
>>> sensibly_extrap = x.copy()
>>> sensibly_extrap[anom_x] = extrap_out
>>> plt.plot(sensibly_extrap, label='extrapolated')
>>> plt.legend()

itsfm.signal_cleaning.get_neighbouring_regions(X, target, region_size)
Takes out samples of region_size on either size of the target.

Parameters

• X (np.array) –

• target (slice) – ndimage.find_objects type slice

• region_size (int >0) –

Returns left_and_right

Return type list

itsfm.signal_cleaning.calc_coarse_fmrate(X, fs, **kwargs)
Calculates slope by subtracting the difference between 1st and last sample and dividing it by the length of the
array. The output is then converted to units of kHz/ms.

Parameters

• X (np.array) – Frequency profile with values in Hz.

• fs (float>0) –

itsfm.signal_cleaning.anomaly_extrapolation(region, X, num_samples, **kwargs)
Takes X values next to the region and fits a linear regression into the region. This is only suitable for cases
where the anomalous region is at an ‘edge’ - either one of its samples is 0 or the last sample of X.

Parameters

• region (object tuple) – A slice type object which is the output from
scipy.ndimage.find_objects This is a slice inside a list/tuple.

• X (np.array) – The original array over which the extrapolation is to be performed

• num_samples (int>0) – The number of samples next to the region to be used to fit the
data for extrapolation into the region.

Returns extrapolated – The values corresponding to the extrapolated region.

Return type np.array

102 Chapter 11. License

itsFM, Release 0.0.1

Notes

1. This function covers 90% of cases. . . if there is an anomaly right next to an edge anomaly with <num_samples
distance – of course things will go whack.

Warning: A mod on this function also allows extrapolation to occur if there are < num_samples next to the
anomaly - this might make the function a bit lax in terms of the extrapolations it produces.

itsfm.signal_cleaning.anomaly_interpolation(region, X, **kwargs)
Interpolates X values using values of X adjacent to the region.

Parameters

• region (object tuple) – Output from scipy.ndimage.find_objects

• X (np.array) –

Returns full_span – The values of interpolated X, of same size as the region length.

Return type np.array

itsfm.signal_cleaning.smooth_over_potholes(X, fs, **kwargs)
A signal can show drastic changes in its value because of measurement errors. These drastic variations in signal
are called potholes (uneven parts of a road). This method tries to ‘level’ out the pothole by re-setting the samples
of the pothole. A linear interpolation is done from the start of a pothole till its end using the closest non-pothole
samples.

A pothole is identified by a region of the signal with drastic changes in slope. A moving window calculates
N slopes between the focal sample and the Nth sample after it to estimate if the Nth sample could be part of a
pothole or not.

Parameters

• X (np.array) –

• fs (float>0) –

• max_stepsize (float>0, optional) – The maximum absolute difference between
adjacent samples. Defaults to 50.

• pothole_inspection_window (float>0, optional) – The length of the mov-
ing window that’s used to discover potholes. See identify_pothole_samples for default
value.

Returns

• pothole_covered

• pothole_regions

See also:

identify_pothole_samples(), pothole_inspection_window()

itsfm.signal_cleaning.identify_pothole_samples(X, fs, **kwargs)
Moves a sliding window and checks the values of samples in the sliding window. If the jump of values between
samples is not linearly propotional to the expected max_stepsize, then it is labelled a pothole sample.

A pothole sample is one which represents a sudden jump in the values - indicating a noisy tracking of the
frequency. The jump in values in a non-noisy signal is expected to be proportional to the distance between the
samples.

11.5. API: support modules 103

https://en.wikipedia.org/wiki/Pothole

itsFM, Release 0.0.1

For instance, if :

>>> a = np.array([10, 2, 6, 10, 12])

If the max step size is 2, then because abs(10-2)>2, it causes a pothole to appear on 2. There is no pothole label
on the 2nd index because abs(10-6) is not >4. Because 10 and 6 are two samples apart, the maximum allowed
jump in value is max_stepsize*2, which is 4.

For optimal pothole detection the ‘look-ahead’ span of the pothole_inspection_window should at least the size
of the longest expected potholes. Smaller window sizes will lead to false negatives.

Parameters

• X (np.array) –

• fs (float>0) –

• max_stepsize (float>0) – The max absolute difference between the values of one
sample to the next.

• pothole_inspection_window (float>0, optional) – Defaults to 0.25ms

Returns pothole_candidates – Boolean array with same size as X. Sample that are True represent
pothole candidates.

Return type np.array

See also:

detect_local_potholes()

itsfm.signal_cleaning.onepass_identify_potholes(X, fs, max_stepsize, **kwargs)

itsfm.signal_cleaning.detect_local_potholes(X, max_step_size)
accepts a 1D array and checks the absolute difference between the first sample and all other samples.

The samples with difference greater than the linearly expected increase from max_step_sizes are labelled can-
didate potholes.

Parameters

• X (np.array) –

• max_step_size (float>=0) –

Returns candidate_potholes – Boolean array of same size as X

Return type np.array

itsfm.signal_cleaning.get_all_spikeish_indices(regions)

itsfm.signal_cleaning.find_non_forbidden_index(candidate, forbidden_indices,
search_direction, X)

itsfm.signal_cleaning.remove_bursts(X, fs, **kwargs)
Bursts are brief but large jumps in the signal above zero. Even though they satisfy most of the other conditions
of beginning above the noise floor and of being above 0 value, they still are too short to be relevant signals.

Parameters

• X (np.array) – The noisy signal to be handled

• fs (float>0) – Sampling rate in Hz.

• min_element_length (float>0, optional) – The minimum length a section of
the signal must be to be kept in seconds. Defaults to 5 inter-sample-intervals.

104 Chapter 11. License

itsFM, Release 0.0.1

Returns X_nonspikey – Same size as X, and without very short segments.

Return type np.array

See also:

segments_above_min_duration()

Notes

An inter-sample-interval is defined as 1/fs

itsfm.signal_cleaning.segments_above_min_duration(satisfies_condition, min_samples)
Accepts a boolean array and looks for continuous chunks that are above a minimum length.

Parameters

• satisfies_condition (np.array) – Boolean array where samples with True satisfy
a condition.

• min_samples (int >0) – The minimum number of samples a continuous region of True
must be to be kept.

Returns above_min_duration – Same size as satisfies_condition, with only the continuous chunks
that are above min_samples.

Return type np.array

itsfm.signal_cleaning.suppress_background_noise(main_signal, input_audio, **kwargs)

itsfm.signal_cleaning.suppress_frequency_spikes(noisy_profile, input_audio, fs,
**kwargs)

itsfm.signal_cleaning.suppress_to_zero(target_signal, basis_signal, threshold,
mode='below')

Sets the values of the target signal to zero if the samples in the basis_signal are geq or leq the threshold

Parameters

• basis_signal (target_signal,) –

• threshold (float) –

• mode (['below', 'above'], str) –

Returns cleaned_signal – A copy of the target signal with the values that are below/above the
threshold set to zero

Return type np.array

Example

create a basis signal with a ‘weak’ left half and a ‘loud’ right hald # we want to suppress the we >>> basis
= np.concatenate((np.arange(10), np.arange(100,200))) >>> target_signal = np.random.normal(0,1,basis.size)
>>> cleaned_target = suppress_to_zero(basis, target_signal, 100, mode=’above’)

itsfm.signal_cleaning.clip_tfr(tfr, **kwargs)

Parameters

• tfr (np.array) – 2D array with the time-frequency representation of choice (pwvd, fft
etc). The tfr must have real-valued non-negative values as the clip range is defined in dB.

11.5. API: support modules 105

itsFM, Release 0.0.1

• tfr_cliprange (float >0, optional) – The maximum dynamic range in dB
which will be used to track the instantaneous frequency. Defaults to None. See Notes
for more details

Returns clipped_tfr – A 2d array of same shape as tfr, with values clipped between [max, max x
10^(tfr_range/20)]

Return type np.array

Notes

The tfr_cliprange is used to remove the presence of background noise, faint harmonics or revernberations/echoes
in the audio. This of course all assumes that the main signal itself is sufficiently intense in the first place.

After the PWVD time-frequency represenation is made, values below X dB of the maximum value are ‘clipped’
to the same minimum value. eg. if the pwvd had values of [0.1, 0.9, 0.3, 1, 0.001, 0.0006] and the tfr_cliprange
is set to 6dB, then the output of the clipping will be [0.5, 0.9, 0.3, 1, 0.5, 0.5]. This step essentially eliminates
any variation in the array, thus allowing a clear tracking of the highest component in it.

itsfm.signal_cleaning.conditionally_set_to(X, conditional, bool_state)
Inverts the samples in X where the conditional is True. :param X: Boolean :type X: np.array :param conditional:
Boolean :type conditional: np.array :param bool_state: :type bool_state: [True, False]

Returns cond_set_X – conditionally set X

Return type np.array

Notes

this function is useful if you want to ‘suppress’ a few samples conditionally based ont he values of the same
samples on another array.

Example

>>> x = np.array([True, True, False, False, True])
>>> y = np.array([0,0,10,10,10])
Imagine x is some kind of detection array, while y is the
signal-to-noise ratio at each of the sample points. Of course,
you'd like to discard all the predictions from low SNR measurements.
Let's say you want to keep only those entries in X where y is >1.
>>> x_cond = conditionally_set_to(x, y<10, False)
>>> x_cond

np.array([False, False, False, False, True])

106 Chapter 11. License

itsFM, Release 0.0.1

11.5.4 Batch processing

Runs the batch processing option. The main outputs are the call measurements and the visualisations. (See
__main__.py)

$ python -m itsfm -batchfile template_batchfile.csv

Also allows the user to run only one specific row of the whole batch file

$ python -m itsfm -batchfile template_batchfile.csv -one_row 10

The line above loads the 11th row (0-based indexing!!) of the template_batchfile

itsfm.batch_processing.run_from_batchfile(batchfile_path, **kwargs)

Parameters batchfile_path (str/path) – Path to a batchfile

Keyword Arguments

• one_row (int, optional) – A specific row to be loaded from the whole batchfile The
first row starts with 0. Defaults to None

• _from (int, optional) – Row to start the batchfile processing from. Defaults to None

• _till (int, optional) – Row to end the batchfile processing. Defaults to None

itsfm.batch_processing.subset_batch_data(batch_data, **kwargs)

Parameters batch_data (pd.DataFrame) –

Keyword Arguments

• one_row (int, optional) – Defaults to None

• _from (int, optional) – Defaults to None

• _till (int, optional) – The row number the analysis should run till, including the
end point. Remember the row numbering starts from 0! Defaults to None

Returns subset_batch_data – Either a copy of batch_data or a part of batch_data

Return type pd.DataFrame

Example

let’s get only one row from the fake batch data file >>> batch = pd.DataFrame(data={‘a’:range(10),
‘b’:range(10)}) >>> onerow = subset_batch_data(batch, one_row=5) >>> print(onerow) # get a limited range
of the dataframe >>> part = subset_batch_data(batch, _from=3, _till=8) >>> print(part)

itsfm.batch_processing.measurement_file_action(**kwargs)
Either lets the measurement file remain, or deletes it if present

Keyword Arguments del_measurement (boolean) – True means all files starting with ‘mea-
surement’ are deleted

itsfm.batch_processing.onerow_used_properly(**kwargs)
Checks that the -one_row argument is not used in conjunction with -from or -till

itsfm.batch_processing.save_measurements_to_file(output_filepath, audio_file_name,
previous_rows, measurements)

Continously saves a row to a csv file and updates it.

Thanks to tmss @ https://stackoverflow.com/a/46775108

11.5. API: support modules 107

https://stackoverflow.com/a/46775108

itsFM, Release 0.0.1

Parameters

• output_filepath (str/path) –

• audio_file_name (str.) –

• previous_rows (pd.DataFrame) – All the previous measurements. Can also just
have a single row.

• measurements (pd.DataFrame) – Current measurements to be incorporated

Returns

Return type None, previous rows

Notes

Main side effect is to write an updated version of the output file.

itsfm.batch_processing.load_raw_audio(kwargs)
Takes a dictioanry input. All the parameter names need to be keys in the input dictionary.

Parameters

• audio_path (str/path) – Path to audio file

• channel (int, optional) – Channel number to be loaded - starting from 1! Defaults
to 1.

• start,stop (float, optional) –

Returns raw_audio – The audio corresponding to the start and stop times and the required channel.

Return type np.array

itsfm.batch_processing.to_separate_from_background(arguments)

itsfm.batch_processing.to_list_w_funcs(X, source_module=<module
'itsfm.measurement_functions' from
'/home/docs/checkouts/readthedocs.org/user_builds/itsfm/envs/latest/lib/python3.7/site-
packages/itsfm-0.0.1-
py3.7.egg/itsfm/measurement_functions.py'>,
**kwargs)

Parameters

• X (str) – String defining a list with commas as separators eg. “[func_name1, func_name2]
“

• source_module (str, optional) – Defaults to itsfm.measurement_functions

• signs_to_remove (list w str) – Any special signs to remove from each str in the
list of comma separated strings. Defaults to None.

Returns list with functions belonging to the source module

Return type list_w_funcs

108 Chapter 11. License

itsFM, Release 0.0.1

Example

>>> x = "[measure_rms, measure_peak_amplitude]"
>>> list_w_funcs = to_list_w_funcs(x)

itsfm.batch_processing.remove_punctuations(full_str, **kwargs)
Removes spaces,], and [in a string. Additional signs can be removed too

Parameters

• full_str (str) – A long string with multiple punctuation marks to be removed (space,
comma,])

• signs_to_remove (list w str', optional) – Additional specific punctuation/s
to be removed Defaults to None

Returns clean_str

Return type str

itsfm.batch_processing.parse_batchfile_row(one_row)
checks for all user-given arguments and removes any columns with DEFAULT in them.

Parameters one_row (pd.DataFrame) – A single row with multiple column names, corre-
sponding to compulsory required arguments and the optional ones

Returns arguments – Simple dictioanry with one entry for each key.

Return type dictionary

itsfm.batch_processing.make_to_oned_dataframe(oned_series)

Parameters oned_series (pd.Series) – One dimensional pd.Series with columns and values

Returns

Return type oned_df

exception itsfm.batch_processing.ImproperArguments

11.5. API: support modules 109

itsFM, Release 0.0.1

110 Chapter 11. License

PYTHON MODULE INDEX

i
itsfm.batch_processing, 107
itsfm.frequency_tracking, 93
itsfm.measure, 87
itsfm.measurement_functions, 89
itsfm.segment, 78
itsfm.signal_cleaning, 100
itsfm.signal_processing, 97
itsfm.user_interface, 75
itsfm.view, 91

111

itsFM, Release 0.0.1

112 Python Module Index

INDEX

A
accelaration() (in module

itsfm.frequency_tracking), 96
anomaly_extrapolation() (in module

itsfm.signal_cleaning), 102
anomaly_interpolation() (in module

itsfm.signal_cleaning), 103
assign_cffm_regionids() (in module

itsfm.measure), 89

C
calc_coarse_fmrate() (in module

itsfm.signal_cleaning), 102
calc_energy() (in module itsfm.signal_processing),

97
calc_proper_kernel_size() (in module

itsfm.segment), 86
calc_proper_kernel_size() (in module

itsfm.signal_processing), 99
calc_sound_borders() (in module

itsfm.signal_processing), 97
calculate_fm_rate() (in module itsfm.segment),

82
CFIdentificationError, 87
check_call_background_segmentation() (in

module itsfm.view), 91
check_relevant_duration() (in module

itsfm.segment), 83
check_segment_cf_and_fm() (in module

itsfm.segment), 83
clean_up_spikes() (in module

itsfm.frequency_tracking), 94
clip_tfr() (in module itsfm.signal_cleaning), 105
combine_and_order_regions() (in module

itsfm.measure), 89
common_measurements() (in module

itsfm.measure), 89
conditionally_set_to() (in module

itsfm.signal_cleaning), 106

D
dB() (in module itsfm.signal_processing), 97

detect_local_potholes() (in module
itsfm.signal_cleaning), 104

duration() (in module itsfm.measurement_functions),
90

E
exterpolate_over_anomalies() (in module

itsfm.signal_cleaning), 100
extrapolate_sensibly() (in module

itsfm.signal_cleaning), 101

F
find_geq_signallevel() (in module

itsfm.frequency_tracking), 94
find_lowest_intense_harmonic_across_TFR()

(in module itsfm.frequency_tracking), 96
find_non_forbidden_index() (in module

itsfm.signal_cleaning), 104
find_regions() (in module itsfm.measure), 89
fit_polynomial_on_downsampled_version()

(in module itsfm.segment), 82
fix_island_anomaly() (in module

itsfm.signal_cleaning), 101
form_consensus_moving_rms() (in module

itsfm.signal_processing), 99
fraction_duration() (in module itsfm.segment),

83
frequency_spike_detection() (in module

itsfm.frequency_tracking), 97

G
generate_pwvd_frequency_profile() (in

module itsfm.frequency_tracking), 95
get_all_spikeish_indices() (in module

itsfm.signal_cleaning), 104
get_cf_region() (in module itsfm.segment), 83
get_fftsize() (in module itsfm.view), 93
get_first_region_above_threshold() (in

module itsfm.frequency_tracking), 97
get_fm_regions() (in module itsfm.segment), 83
get_frequency_resolution() (in module

itsfm.signal_processing), 98

113

itsFM, Release 0.0.1

get_midpoint_of_a_region() (in module
itsfm.frequency_tracking), 96

get_most_intense_harmonic() (in module
itsfm.frequency_tracking), 96

get_neighbouring_regions() (in module
itsfm.signal_cleaning), 102

get_peak_frequency() (in module
itsfm.signal_processing), 98

get_power_spectrum() (in module
itsfm.signal_processing), 97

get_pwvd_frequency_profile() (in module
itsfm.frequency_tracking), 93

get_robust_peak_frequency() (in module
itsfm.signal_processing), 98

get_terminal_frequency() (in module
itsfm.signal_processing), 100

get_thresholds_re_max() (in module
itsfm.segment), 86

I
identify_cf_ish_regions() (in module

itsfm.segment), 86
identify_maximum_contiguous_regions()

(in module itsfm.segment), 85
identify_pothole_samples() (in module

itsfm.signal_cleaning), 103
identify_valid_regions() (in module

itsfm.segment), 84
ImproperArguments, 109
IncorrectThreshold, 87
itsfm.batch_processing (module), 107
itsfm.frequency_tracking (module), 93
itsfm.measure (module), 87
itsfm.measurement_functions (module), 89
itsfm.segment (module), 78
itsfm.signal_cleaning (module), 100
itsfm.signal_processing (module), 97
itsfm.user_interface (module), 75
itsfm.view (module), 91
itsFMInspector (class in itsfm.view), 91

L
load_raw_audio() (in module

itsfm.batch_processing), 108
low_and_highpass_around_threshold() (in

module itsfm.segment), 85

M
make_overview_figure() (in module itsfm.view),

93
make_specgram() (in module itsfm.view), 93
make_to_oned_dataframe() (in module

itsfm.batch_processing), 109
measure_hbc_call() (in module itsfm.measure), 87

measure_peak_amplitude() (in module
itsfm.measurement_functions), 90

measure_peak_frequency() (in module
itsfm.measurement_functions), 90

measure_rms() (in module
itsfm.measurement_functions), 90

measure_terminal_frequency() (in module
itsfm.measurement_functions), 90

measurement_file_action() (in module
itsfm.batch_processing), 107

median_filter() (in module itsfm.segment), 86
median_filter() (in module

itsfm.signal_processing), 99
moving_rms() (in module itsfm.signal_processing),

98
moving_rms_edge_robust() (in module

itsfm.signal_processing), 99

O
onepass_identify_potholes() (in module

itsfm.signal_cleaning), 104
onerow_used_properly() (in module

itsfm.batch_processing), 107

P
parse_batchfile_row() (in module

itsfm.batch_processing), 109
parse_cffm_segments() (in module

itsfm.measure), 88
perform_segment_measurements() (in module

itsfm.measure), 88
plot_accelaration_profile() (in module

itsfm.view), 92
plot_dbrms_cffmprofiles() (in module

itsfm.view), 93
plot_movingdbrms() (in module itsfm.view), 92
pre_process_for_segmentation() (in module

itsfm.segment), 85
pwvd_transform() (in module

itsfm.frequency_tracking), 95

R
refine_candidate_regions() (in module

itsfm.segment), 83
refine_cf_fm_candidates() (in module

itsfm.segment), 79
remove_bursts() (in module itsfm.signal_cleaning),

104
remove_punctuations() (in module

itsfm.batch_processing), 109
resize_by_adding_one_sample() (in module

itsfm.segment), 86
resize_by_adding_one_sample() (in module

itsfm.signal_processing), 99

114 Index

itsFM, Release 0.0.1

rms() (in module itsfm.signal_processing), 97
run_from_batchfile() (in module

itsfm.batch_processing), 107

S
save_measurements_to_file() (in module

itsfm.batch_processing), 107
save_overview_graphs() (in module

itsfm.user_interface), 77
segment_and_measure_call() (in module

itsfm.user_interface), 76
segment_by_peak_percentage() (in module

itsfm.segment), 80
segment_by_pwvd() (in module itsfm.segment), 80
segment_call_from_background() (in module

itsfm.segment), 83
segment_call_into_cf_fm() (in module

itsfm.segment), 78
segment_cf_regions() (in module itsfm.segment),

87
segments_above_min_duration() (in module

itsfm.signal_cleaning), 105
show_all_call_parts() (in module itsfm.view),

92
smooth_over_potholes() (in module

itsfm.signal_cleaning), 103
speed() (in module itsfm.frequency_tracking), 96
start() (in module itsfm.measurement_functions), 90
stop() (in module itsfm.measurement_functions), 90
subset_batch_data() (in module

itsfm.batch_processing), 107
suppress_background_noise() (in module

itsfm.signal_cleaning), 105
suppress_frequency_spikes() (in module

itsfm.signal_cleaning), 105
suppress_to_zero() (in module

itsfm.signal_cleaning), 105

T
to_list_w_funcs() (in module

itsfm.batch_processing), 108
to_separate_from_background() (in module

itsfm.batch_processing), 108
track_peak_frequency_over_time() (in mod-

ule itsfm.frequency_tracking), 96

V
visualise_accelaration()

(itsfm.view.itsFMInspector method), 91
visualise_cffm_segmentation()

(itsfm.view.itsFMInspector method), 91
visualise_fmrate() (itsfm.view.itsFMInspector

method), 91

visualise_fmrate_profile() (in module
itsfm.view), 92

visualise_frequency_profiles()
(itsfm.view.itsFMInspector method), 91

visualise_geq_signallevel()
(itsfm.view.itsFMInspector method), 91

visualise_pkpctage_profiles()
(itsfm.view.itsFMInspector method), 91

visualise_sound() (in module itsfm.view), 92

W
whole_audio_fmrate() (in module itsfm.segment),

81

Index 115

	Introduction
	Let’s cut to the chase : some examples NOW
	Basic Examples
	Detailed Examples Gallery
	itsfm without coding
	Accuracy Reports

	What the package does:
	What the package does not:
	Installation
	What the package could do with (future feature ideas):
	Why is everything in this codebase a function? Have you heard of classes?
	Where to get help
	Common Errors

	I found a bug and/or have fixed something
	Acknowledgements
	License
	API : The user interface
	API : Segmenting sounds into CF and FM
	API: Measuring sounds
	API : Viewing sounds, parameters and results
	API: support modules

	Python Module Index
	Index

